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Abstract

This thesis is a part of the Hogthrob project, which aims to use sensor

network technology for sow monitoring. A sensor network is defined as

a collection of sensor nodes, each having sensing and communication

capabilities.

Having a way to detect the start of a sows heat-period, will enable

the farmer to inseminate the sow at the most beneficiary time. Perform-

ing the insemination at the right time will increase the chance of im-

pregnating the sow. If the sows does not become pregnant, the farmer

will have to feed the sow for 3 weeks before she enters heat again, thus

raising the production costs. An increased activity of the sow have pre-

viously been shown to be a good indication of the sow being in heat.

In this thesis we design and deploy- a data gathering application to

obtain data, that allows a method to detect the start of a sows heat-

period to be devised. For this purpose we develop and deploy a sensor

network application that can gather activity data for a sow. In the de-

ployment we must monitor the sow for 20 days, to gather data showing

both the non-heat and heat activity levels. To be successful this appli-

cation needs to collect enough data that the detection model can be

established. Establishing this detection model is beyond the scope of

this thesis, but we show that the data collected during the deployment

indicates an increased activity during the heat-period.

Furthermore we explore the possibility of using data compression for

similar data gathering experiments, by evaluating 2 general purpose al-

gorithms and one that is specifically geared towards our experiment. We

show that using compression would be beneficiary for our application,

but that the choice of compression algorithm can have a huge impact on

the lifetime of the application.





Contents

1 Introduction 9

1.1 Hogthrob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Compression . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Related Work 15

2.1 Node Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 UC Berkeley Motes . . . . . . . . . . . . . . . . . . . . . . 15

The Mica Mote . . . . . . . . . . . . . . . . . . . . . . . . 15

Mica2, Mica2Dot and MicaZ Motes . . . . . . . . . . . . . 16

Telos/T-Mote Sky . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 ETH Zürich BTnodes . . . . . . . . . . . . . . . . . . . . . 17

BTnode 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 17

BTnode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Node Summary . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Node Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 TinyOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 BTnut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Experimental Sensor Networks . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Great Duck Island . . . . . . . . . . . . . . . . . . . . . . 20

Lessons for Hogthrob . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 ZebraNet . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Lessons for Hogthrob . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 A Macroscope in the Redwoods . . . . . . . . . . . . . . . 23

Lessons for Hogthrob . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Deployment of Industrial Sensor Networks . . . . . . . . . 24

Lessons for Hogthrob . . . . . . . . . . . . . . . . . . . . . 24

2.3.5 Wired Pigs . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Lessons for Hogthrob . . . . . . . . . . . . . . . . . . . . . 25

2.4 Previous Farm Experiments . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Automated Oestrus Detection on Sows . . . . . . . . . . . 26

2.4.2 Health State Monitoring on Cows with Bluetooth . . . . . 26

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5/120



CONTENTS CONTENTS

3 The First Hogthrob Experiment 29

3.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Back Pressure Test . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Vulva Reddening Score . . . . . . . . . . . . . . . . . . . . 31

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Node Hardware 33

4.1 Sensor Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . 33

Range Options . . . . . . . . . . . . . . . . . . . . . . . . 34

Interface Options . . . . . . . . . . . . . . . . . . . . . . . 34

Energy Consumption and Startup Time . . . . . . . . . . . 34

4.1.2 Accelerometers from Analog Devices . . . . . . . . . . . . 35

4.1.3 Accelerometers from Freescale Semiconductors . . . . . . 35

4.1.4 Accelerometers from STMicroelectronics . . . . . . . . . . 35

4.1.5 Comparison of the different Accelerometers . . . . . . . . 35

4.1.6 Other Possible Sensors . . . . . . . . . . . . . . . . . . . . 36

4.1.7 Manufacturing the Sensor Board . . . . . . . . . . . . . . 37

4.2 BTnode Modifications . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Reducing Energy Consumption on the Nodes . . . . . . . 38

4.2.2 Voltage Regulator for the Bluetooth Module . . . . . . . . 39

4.2.3 Battery Charge Indicator . . . . . . . . . . . . . . . . . . . 39

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Low Level Software 41

5.1 Accessing the Accelerometers . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 The ADXL320 . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.2 The LIS3L02DS . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 Implementing Power Management . . . . . . . . . . . . . 43

5.2.2 Power Management on the Mica Motes . . . . . . . . . . . 44

5.3 TinyBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.1 Problems in the original TinyBT Stack . . . . . . . . . . . 45

5.3.2 Duty Cycling the Bluetooth Module . . . . . . . . . . . . . 46

5.4 Storing Sensor Data . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.1 Accessing the Flash . . . . . . . . . . . . . . . . . . . . . . 47

Disabled Interrupts . . . . . . . . . . . . . . . . . . . . . . 49

Busy Waiting . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.2 Placing Code in the Boot Loader Area . . . . . . . . . . . 50

5.4.3 Finding Unused Flash Pages . . . . . . . . . . . . . . . . . 50

5.4.4 A TinyOS Component for Accessing the Flash . . . . . . . 51

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5.1 Further Work on TinyBT . . . . . . . . . . . . . . . . . . . 52

6/120



CONTENTS CONTENTS

6 The Application 55

6.1 Time Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Flash Page Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 Offloading Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3.1 Memory Considerations . . . . . . . . . . . . . . . . . . . 57

6.3.2 Initiating Bluetooth Communication . . . . . . . . . . . . 57

6.3.3 Choosing a Packet Type . . . . . . . . . . . . . . . . . . . 58

6.3.4 Bluetooth Communication Problems . . . . . . . . . . . . 59

6.3.5 Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.6 Duty Cycling . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 In Field Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.5 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.5.1 Making the Protocol Robust . . . . . . . . . . . . . . . . . 63

6.5.2 Automatic Reboot . . . . . . . . . . . . . . . . . . . . . . 63

6.6 Size of the Final Application . . . . . . . . . . . . . . . . . . . . . 64

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.7.1 Possible Improvements . . . . . . . . . . . . . . . . . . . . 65

7 Energy Budget 67

7.1 Battery Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Battery Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2.1 Discharging the Batteries . . . . . . . . . . . . . . . . . . 69

7.2.2 Capacity Results . . . . . . . . . . . . . . . . . . . . . . . 70

7.3 Energy Consumption of the Node . . . . . . . . . . . . . . . . . . 71

7.3.1 Measuring Energy Consumption . . . . . . . . . . . . . . 72

7.3.2 Current Consumption Estimations . . . . . . . . . . . . . 73

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8 Field Experiment Setup 75

8.1 Sow Marking and Node Pairing . . . . . . . . . . . . . . . . . . . . 75

8.2 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.3 Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.4 Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.5 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9 Field Experiment Results 81

9.1 Results of Manual Heat Detection . . . . . . . . . . . . . . . . . . 81

9.2 Problems With Node Check-in . . . . . . . . . . . . . . . . . . . . 82

9.3 Unexpected Node Reboots . . . . . . . . . . . . . . . . . . . . . . 83

9.4 Server Problems During the Experiment . . . . . . . . . . . . . . . 83

9.5 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.5.1 The Original Extraction Algorithm . . . . . . . . . . . . . 84

9.5.2 Taking the Experiment Problems into Account . . . . . . . 85

9.5.3 Anomalies in the Extracted Data . . . . . . . . . . . . . . 86

9.6 Validating the Collected Data . . . . . . . . . . . . . . . . . . . . . 87

9.6.1 Verifying the Correctness of the Dataset . . . . . . . . . . 87

7/120



CONTENTS CONTENTS

9.6.2 Correlating the Acceleration Data to the Video . . . . . . . 89

9.7 Node Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.8 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10 Compression 95

10.1 Overview of the Data . . . . . . . . . . . . . . . . . . . . . . . . . 95

10.2 Choosing Compression Algorithms . . . . . . . . . . . . . . . . . . 96

10.3 Huffman Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

10.3.1 Generating the Code Table . . . . . . . . . . . . . . . . . . 98

10.3.2 Implementation Notes . . . . . . . . . . . . . . . . . . . . 100

10.3.3 Choosing the Best Code Tables . . . . . . . . . . . . . . . 101

10.4 Lempel-Ziv 77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.4.1 Implementation Notes . . . . . . . . . . . . . . . . . . . . 102

10.5 A Simple Data Specific Algorithm . . . . . . . . . . . . . . . . . . 102

10.6 Compression Framework . . . . . . . . . . . . . . . . . . . . . . . 102

10.6.1 Compression Algorithm Interface . . . . . . . . . . . . . . 103

10.6.2 Testing the Algorithms on the PC . . . . . . . . . . . . . . 103

10.6.3 Testing the Algorithms on the Node . . . . . . . . . . . . . 104

10.7 Testing the Compression Algorithms . . . . . . . . . . . . . . . . . 104

10.7.1 Compression Ratio . . . . . . . . . . . . . . . . . . . . . . 104

10.7.2 Compression Time and Energy Consumption . . . . . . . . 105

10.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10.8.1 Expected Results . . . . . . . . . . . . . . . . . . . . . . . 105

10.8.2 Code Size and Memory Usage . . . . . . . . . . . . . . . . 105

10.8.3 Compression Ratio . . . . . . . . . . . . . . . . . . . . . . 106

10.8.4 Compression Speed and Current Consumption . . . . . . 107

10.9 Would Compression Have Helped? . . . . . . . . . . . . . . . . . . 109

10.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

10.10.1 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . 110

11 Conclusion 111

11.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11.2 Future Work on Similar Applications . . . . . . . . . . . . . . . . . 112

Appendix 113

A Bibliography 113

B Sow Movements 119

8/120



Chapter 1

Introduction

We will start by presenting the goals and requirements of the Hogthrob project. We

will then in detail present the problems in the part of the Hogthrob project, that this

thesis covers, and outline the approach we will take. We describe the contributions

of this thesis, and present an outline for the rest of the thesis.

1.1 Hogthrob

The Hogthrob project1 is a research project, with the goal to build a sensor net-

work infrastructure for sow monitoring. The project is a collaboration between the

following entities:

• Dept. of Informatics and Mathematical Modeling, Technical University of Den-

mark (DTU)

• Dept. of Large Animal Science, The Royal Veterinary and Agricultural Univer-

sity (KVL)

• The National Committee for Pig Production

• IO Technologies

• Dept. of Computer Science, University of Copenhagen

Currently the systems used for sow monitoring are primarily based on RFID ear

tags. Such a tag can be used to identify the sow, and to control the amount of food

dispensed to the sow at the feeding stations. Furthermore the feeding stations can

be programmed to lead specific sows outside the pen, making it easy for the farmer

to round up them up.

Some of the problems with these tags are:

No easy way to locate a specific sow - In some cases, e.g. when a sow is sick, the

feeding station software can alert the farmer that a specific sow has not been

at the feeding station for an extended period. In such a case, the farmer has

to manually find the sow in the pen, using a hand-held RFID tag reader. This

reader must be close to the ear tag to read the RFID tag, making this process

impractical.

No reliable way to detect heat - When a sow enters heat, she must be insemi-

nated within a short period of time. If this does not happen, there is a 3 week

period before the sow is in heat again. The currently available solution, is to

place a box with a boar (i.e. a male pig), inside the pen. When a sow ap-

proaches the boar, her ear tag is read. The closer to the heat-period, the more

1 �����������	��
	
	
��
���������������������
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Introduction 1.2: Problem Definition

often the sow approaches the boar. However, sows establish themselves in a

strict hierarchy, and the sows low in the hierarchy might not approach the

boar at all.

It is these two problems that the Hogthrob project strives to resolve, through the

use of sensor network technology.

With regard to the heat detection, it has previously been shown, that the ac-

tivity of the sow can be a good indicator of when it is in heat, as a statistically

significant change in the activity of the sow occurs[26]. However this experiment

was carried out on sows that were housed individually. In Denmark, the legislation

requires that sows are housed together in large pens for most of the time. Therefore

we will need to re-validate the results from the previous experiment. We will also

need to devise a detection algorithm, that can be used to detect the heat-period.

We will need an experiment collecting data, to devise this detection algorithm.

This requires that we monitor the activity patterns of several sows, in their pen. The

more data is collected, the more certain we can be of being able to devise a model.

A way to collect these activity patterns would be to monitor the pen using

video cameras, and track the sows this way. However it will not be easy to discern

the sows from each other. Instead we opt to use sensor nodes to collect the data.

Using sensor nodes has the advantage that we can simply attach nodes to the sows

we wish to monitor.

This data collection experiment will be the main focus of this thesis.

1.2 Problem Definition

Using sensor nodes to collect activity patterns from sows requires that we design

and build and an application for this purpose. However before we can start to design

the application, we will have to provide answers to some basic questions:

How to measure the activity? Others have successfully used accelerometers[26]

for this purpose, so we will choose the same approach.

For how long should we measure? We will have to gather data, both in the heat-

period and outside the heat-period, to be able to compare. We need both pe-

riods from the same sow, as the activity patters might not be the same across

sows. If we collect data from the end of a heat-period and 20 days forward,

we can be fairly certain that the sow will enter the next heat-period.

How often should we obtain measurements? We want to collect as much data as

possible, to make it easier to devise the model for heat detection. On the other

hand, the amount of data we gather will affect the lifetime of the node, as we

will spend more energy on sampling. So this will have to be a tradeoff.

Once we have these questions answered, we can begin to answer the questions

about the design of the data gathering application:

Which sensor node to use? There are many available. However we already have

experience with the BTnode 2.2 from ETH Zürich, and have enough nodes

available to carry out the experiment. Therefore we wish to use this node.

How should we power the sensor node? Since the node will be attached to the

sow, it has to be powered by some sort of battery. It is an indoor stable, so

10/120



1.2: Problem Definition Introduction

using solar panels or the like is not possible. We will have to find a way to

provide enough power for the node, so that it can function throughout the

duration of the experiment.

How do we protect the node? Sows are very curious, and will play with almost

anything they can get hold of. Since the sows are housed many together, we

need to protect the node from the other sows. The packaging must also be able

to protect the node from the ammonia in the air, and the manure on the floor.

How do we protect the sow? While the packaging protects the node, we also need

it to protect the sow. The chemicals in batteries, or the electronics in the node

can potentially hurt the sow. This must of course not happen.

Do we store the data on the node or do we offload it? If we make the assump-

tion that we store one bit each second to indicate if the sow have been active

or not in the last second, we will end up with 210 KiB of data. This should be

possible to store on the node. However we do not know how large the accel-

eration should be, before we can consider the sow to be active. If we instead

assume that a byte is needed each second, this will result in 1.6 MiB, more

than we can reasonably expect to store on a sensor node.

How can we offload the data? We will need some kind of radio, and the obvi-

ous choice is the Bluetooth module on the BTnode. There should be plenty of

power in the stables, to establish an infrastructure that can we can offload the

data to, and which covers the entire pen.

Will the sensor nodes last throughout the experiment? If the node can survive

for the duration of the experiment, depends on the answers to many of the

other questions. The energy consumption will depend on how often we sam-

ple, how we offload the data and how often we offload data. However if we

use the Bluetooth to offload the data, we will not be able to leave the radio on

for the duration of the experiment, because it uses too much power.

How should the radio be duty cycled? This in turn depends on how much data

we gather, and how much we will be able to store on the node. How much we

can store on the node will depend on how we store it, and compression might

be practical for this.

We will explore all of these problems detail, and conduct the data collection exper-

iment. However we will not include compression in the deployed application for

two reasons:

1. We do not know much about the data we collect. Therefore it can be hard to

choose a compression algorithm that fits it.

2. We want the deployed application to be as deterministic as possible. Compress-

ing the data will affect the duty cycle of the radio, as we either will have less

data to offload, or will offload it at unknown points in time.

Instead we will evaluate the compression algorithms when the field experiment is

over, in order to evaluate how it would have affected the experiment.

1.2.1 Compression

It has been argued that compression could be used in sensor networks to lower

the energy consumption, especially on nodes where data is aggregated from several

11/120
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sources[41]. However few compression algorithms are available for the applications

in typical sensor network operating systems such as TinyOS.

Compression have been used as a way to increase the bandwidth[60], and

with the goal of lowering energy consumption[17, 48], but a through analysis of

how compression algorithms affect the energy consumption have not been done.

A data collecting application such as ours, is an obvious candidate for compres-

sion. Therefore we wish to evaluate how using compression to store and transfer

data would have affected our field experiment. Performing this evaluation after the

experiment allows us to test different compression algorithms against each other,

with real data.

We will test the compression algorithms with regard to compression ratio, en-

ergy consumption and speed of the compression they can provide when compress-

ing the data from the field experiment. All of these properties can affect how useful

a compression algorithm is in a sensor network.

To perform these tests, we will develop a framework, that allows us to test

the algorithms both on a sensor network node, and on a PC. Being able to run

the algorithms on the PC is important as it will speed the development of new

algorithms, as debugging them becomes easier.

1.3 Contribution

The contributions made by this thesis are as follows:

• We introduce a buffer management system in TinyOS, to allow the radio on

the node to function at full speed (Section 5.3).

• To duty cycle the radio, we present a novel approach to data storage on the

nodes (Section 5.4).

• We design a sensor network application, driven by the needs of the data col-

lection experiment (Chapter 6).

• We deploy the sensor network, and describe the lessons we have learned from

the deployment (Chapter 9).

• We design and develop a framework for testing different compression algo-

rithms (Section 10.6).

• We show that a compression algorithm specifically designed for the collected

data performs better than generic algorithms (Section 10.8).

• We show that compression could have a positive effect on our experiment,

but the choice of compression algorithm can severely affect the lifetime of the

node (Sections 10.8 and 10.9).

Designing the actual heat-detection algorithm from the gathered data is future

work, and will be carried out by Cécile Cornou at KVL.

1.4 Outline

We will start by looking at previous contributions to the sensor network area, in

order to gather as many lessons as possible, before proceeding with our own ex-

periment (Chapter 2). We then describe the goal and method of our experiment,
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and how to establish the ground truth (Chapter 3). We proceed to cover the hard-

ware for the experiment. We select sensors, design a sensor board, and we lower

the energy consumption of the hardware as much as possible (Chapter 4).

We then focus on the software required to support our application, such as

drivers for the sensor board and Bluetooth radio (Chapter 5), before designing the

application and protocols to use in the experiment (Chapter 6). We provide an

estimation of the energy consumption of the node, to find out if our application can

run for the entire experiment (Chapter 7). We describe how the infrastructure for

the experiment have been installed in the stables, and how to protect it and the

node from the environment (Chapter 8). We extract the data gathered by the nodes

during the experiment, and we verify that it can be correlated to the ground truth

(Chapter 9). Lastly we evaluate different compression algorithms, and look at how

they could be used to improve the application (Chapter 10).
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Chapter 2

Related Work

In this chapter we will describe the hardware, applications and deployments oth-

ers have created, to extract the lessons and experiences that we can use for our

deployment.

We start by looking at the most popular hardware platforms, together with the

platform that we will specifically be using, to provide a view of the forces and weak

points of different platforms. After describing the platforms, we will describe two

software systems that specifically targets sensor networks.

Then we will describe several recent sensor network deployments that resem-

ble our deployment, or from which we can learn important lessons. Lastly we will

describe other farm experiments that have not been performed within the sensor

networking scope.

2.1 Node Hardware

In this section we will describe a small part of the available nodes, their capabilities,

forces and weak points. Currently many different platforms exists, but we will focus

on the newer and most popular UC Berkeley motes, and the BTnodes developed at

ETH Zürich.

2.1.1 UC Berkeley Motes

UC Berkeley have been at the center of sensor network research, since the field

started to attract attention. The original idea of “Smart Dust”[58], i.e. a large col-

lection of one cubic-millimeter computers communicating through the use of optics

and lasers, has given way for larger nodes with more processing power and sensing

capabilities, organized in smaller networks than originally envisioned.

The Mica Mote

The Mica series of sensor network nodes — called motes — are the most popular

nodes currently available. They are manufactured by Crossbow Technology1.

The original Mica design (see Figure 2.1(a)) is no longer in production but

consisted of an Atmel ATMega103 micro-controller, combined with a TR1000 radio

transceiver[29]. 4 Mbit of external flash was also connected to the ATMega103,

which could be used to store sensor measurements, or as temporary storage for a

new program image. The Mica was fitted with a co-processor that could reprogram

the ATMega103 from an image stored in the external flash. Power was provided

1 �����������	��
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Figure 2.1 – The Mica Mote Family

(a) Mica (b) Mica2 (c) Mica2Dot (d) MicaZ

from a battery holder, that could hold two AA batteries. To allow the mote to func-

tion as the batteries were depleted, a boost converter was included, which provided

the node with 3 V, from input voltages as low as 1.1 V.

The Mica mote did not have any sensors built in. Instead sensor boards could be

attached through a 51-pin I/O expansion connector. This connector provided access

to most of the ATMega103’s I/O-pins, including I2C, SPI and Analog to Digital,

enabling the use of many common sensors.

Mica2, Mica2Dot and MicaZ Motes

The Mica2, Mica2Dot and MicaZ motes are all descendants of the original Mica

mote. All three feature the Atmel ATMega128 and 4 Mbit of external flash[16].

However they differ in the choice of radio and form factor.

The Mica2 — shown in Figure 2.1(b) — uses the ChipCon CC1000 radio, which

can operate in different bands, depending on the regional requirements. The Mica2

features the same I/O expansion connector as the original Mica mote, making it

possible to reuse sensor boards.

The Mica2Dot — shown in Figure 2.1(c) — is basically a Mica2 the size of a

quarter (25 mm diameter). The mote is powered by a single 3 V coin cell battery,

which is attached directly to the mote. The mote has 18 expansion pins, to which

sensor boards can be attached.

The MicaZ (see Figure 2.1(d)) is the newest member of the Mica family. This

mote features the ChipCon CC2420 radio, which is IEEE 802.15.4 compatible. Oth-

erwise the node is similar to the Mica2, in that it uses the same micro-controller,

has the same external flash, the same I/O expansion connector and from factor.

Neither of these motes feature a boost-converter. The boost-converter was omit-

ted, because it will cause a higher power consumption as the input voltage drops.

This causes the nodes to use more power as the batteries are depleted, which again

leads to a lower lifetime[49]. The implication of this choice, especially on measure-

ments from the ADC, does not seem to have been explored in depth.

Telos/T-Mote Sky

The Telos mote is the newest mote developed at UC Berkeley, and is manufactured

by Moteiv2 under the T-Mote brand (see Figure 2.2). The focus of the Telos mote

have been to lower the power consumption, make it easier to use the node, and

2 �����������	��
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Figure 2.2 – The T-Mote Sky, the commercial version of the Telos mote

make the node more robust[50].

To lower the power consumption, a micro-controller from Texas Instruments

called the MSP430 is used instead of the Atmel ATMega128. The reasoning behind

this choice is that normal sensor network applications spend most of their lifetime in

sleep-mode, and the MSP430 only uses 1 µA in sleep-mode, where the ATMega128

uses about 20 µA[50]. Apart from the lower power consumption, the MSP430 is

capable of operating on a supply voltage of 1.8 V, where the ATMega128 needs

2.7 V. This means that it is possible for the MSP430 to operate off two AA batteries,

until these are completely depleted.

To make the mote easier to use, it features a built in USB programmer, so that

it can be connected directly to the USB port of a PC, and programmed this way.

The main advantage of this is in the development stages, where the mote does not

require external programmers.

To make the mote more robust, sensors are integrated on the mote. It features

an optional SHT11/SHT15 humidity and temperature sensor, and optional light

sensors. The fact that the sensors are integrated with the mote, is supposed to give

the design additional robustness. If there is need for other sensors two expansion

connectors are provided.

The Telos mote uses the ChipCon CC2420 IEEE 802.15.4 compatible radio, just

as the MicaZ.

2.1.2 ETH Zürich BTnodes

At ETH Zürich, they created the BTnode platform, to prototype wireless sensor net-

work applications quickly[32]. The BTnode platform uses Bluetooth for the wireless

communication. The benefits of using Bluetooth is that a very high bandwidth is

available, compared to both the CC1000 and IEEE 802.15.4 compliant radios. But

Bluetooth also enables easy communication between the nodes and a PC, eliminat-

ing the need for a gateway device.

The BTnode 1 was a prototype for use in the Smart-Its project[32]. We will

not go into detail about this, as it resembles the BTnode 2.2 quite a lot, both in the

choice of components and in the capabilities.

BTnode 2.2

The BTnode revision 2.2 — shown in Figure 2.3(a) — is based on the same Atmel

ATMega128 that is used by the Mica motes. The ATMega128 is connected to an Er-

icsson ROK 101 007 Bluetooth module, which was the first commercially available

Bluetooth module[32]. To the ATMega128 an additional 60 KiB of memory is con-
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Figure 2.3 – The newer BTnodes

(a) BTnode 2.2 (b) BTnode 3

nected, making a total of 64 KiB available to applications. Some nodes are equipped

with in total 240 KiB of external memory, which is made accessible as 4 separate

memory banks.

The node has a built in voltage regulator, that makes it possible to use batteries

to power the node. The voltage regulator can handle voltages in the range between

3.0 V to 16 V. A second voltage regulator controls the power to the Bluetooth mod-

ule. This is necessary to completely power off the Bluetooth module when it is not

in use.

The ROK 101 007 is connected to one of the ATMega128’s two UARTs. The two

can communicate at a speed of 460.8 kbps, which should make it possible to use

the full bandwidth of the Bluetooth protocol.

The BTnode does not have any built in sensors. However most of the unused

pins on the ATMega128 are available through 6 connectors on the node, making it

easy to attach sensors to the node.

The default OS for the BTnode is the BTnut operating system, which is a simple

OS written in C[10] (see Section 2.2.2 for more details). At DIKU a port of TinyOS,

complete with a simple Bluetooth stack have been created[36].

BTnode 3

The BTnode 3 is a descendant of the BTnode 2.2. It still uses the Atmel ATMega128

as the MCU, but instead of the old Ericsson Bluetooth module, it includes both

a ChipCon CC1000 radio — as is also found on the Mica2 node — and a Zeevo

ZV4002 Bluetooth module. Both radios can be switched on and off independently

by the MCU. The node is shown in Figure 2.3(b).

The inclusion of the ChipCon radio makes the BTnode 3 able to both participate

in networks with Mica2 nodes, and run the same TinyOS programs with very few

changes. While the Bluetooth module have been changed, it still provides the same

HCI interface,3 so BTnut applications designed for the BTnode revision 2.2, should

also work with few changes.

Other changes to the design includes a built in battery holder for two AA-

sized batteries. Since the node needs 3.3 V to operate, a boost converter is included

3Host Computer Interface, the communication protocol between the Bluetooth module and the host

computer. Since most Bluetooth modules use this interface, it is simple to replace one module with

another.
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Table 2.1 – Comparison of the different sensor network nodes

Clock RAM Bandwidth
Node MCU

(MHz) (KiB)
Radio

(kbps)

Mica ATMega103 4.00 4 TR1000 115.0

Mica2 ATMega128 7.37 4 CC1000 76.8

Mica2Dot ATMega128 7.37 4 CC1000 76.8

MicaZ ATMega128 7.37 4 CC2420 250.0

Telos MSP430 8.00 10 CC2420 250.0

BTnode 2.2 ATMega128 7.37 64 ROK 101 007 433.9

BTnode 3 ATMega128 7.37 244 ZV4002, CC1000 433.9, 76.8

that can deliver 3.3 V from an input voltage of down to 0.5 V. Furthermore the 6

connectors on the BTnode 2.2 have been replaced with a single connector, much

like the I/O expansion connector on the Mica-family motes, that makes it possible

to stack sensor boards on to the node.

2.1.3 Node Summary

In Table 2.1, the main characteristics of the different nodes we have described, is

listed. As can be seen from this table, most of the nodes use similar hardware. The

advantages of this is that it allows code reuse, and enables the nodes to communi-

cate, even across different platforms.

Apart from the described nodes, many others exist which are either specialized

to a specific task (such as the node developed for ZebraNet, see Section 2.3.2), or

with hardware that differs greatly from the norm (such as the Intel Mote with a

32-bit MCU, see Section 2.3.4). However the Mica family are without a doubt the

most popular.

2.2 Node Software

Several operating systems which specifically target wireless sensor network appli-

cations exists. The range of hardware supported by each operating system differs

greatly, just as the services provided by the individual operating systems does. We

will present the two OS’s that are most important for our work, TinyOS and BTnut.

2.2.1 TinyOS

TinyOS[28] is a very simple event driven operating system. Its main focus is on the

Mica family. Amongst other things it includes several different networking proto-

cols, and various applications, such as TinyDB which presents the sensor network

through a SQL-like interface. TinyOS have been ported to several different plat-

forms, including the BTnode. This port includes an implementation of the lower

layers of the Bluetooth stack, and makes it possible to communicate with other

Bluetooth devices at the ACL level.4

TinyOS was developed with modularity and resource optimization in mind.

Therefore all functionality in TinyOS is encapsulated in components. At compile-

4The ACL level is the lowest communication protocol in a Bluetooth module, which accessible from

software. Higher level protocols are implemented on top of the ACL protocol.
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time, only the components requested by the application programmer is included in

the compiled program, thus lowering the memory and power requirements as much

as possible.

TinyOS is written in the C-extension called nesC[25]. nesC enables the compo-

nent model of TinyOS, and adds some valuable tools, such as compile time warnings

for possible races in the code, and in-code documentation of interfaces. Further-

more it supports the annotation of commands and events, so that it is possible to

see which commands and events are allowed to be executed in interrupt context

— called $�%�&('*) . Commands and events that are marked with $+%�&('*) should not be

used at the application level, but only in the low level software — such as drivers

— that directly interacts with interrupts.

While the event-driven component-based model makes it easy to replace parts

of the system, it also makes it harder to perform other tasks. Since the application

only can respond to events, it is often necessary to create state-machines to keep

track of what the application should do next.

2.2.2 BTnut

At ETH they have developed an operating system for use with the BTnode called

BTnut[10]. BTnut is based on Nut/OS5, an operating system for the Ethernut sys-

tem. An Ethernut system is an Atmel ATMega128 connected to an Ethernet con-

troller. Some of the main features of Nut/OS is cooperative multitasking, events,

timers and dynamic heap application.

BTnut keeps this feature set, but adds Bluetooth support, by implementing

the high level Bluetooth protocols, such as RFCOMM and L2CAP. BTnut is, just as

Nut/OS, written in C.

Because of its design, BTnut is not a very flexible solution. If there are fea-

tures of the system that are unneeded for a specific application, it is not easy to

drop these. If one wants to minimize the memory requirements, this can critical.

However, it provides a high-level system interface, which can help the application

programmer to focus on the application.

2.3 Experimental Sensor Networks

There have been much research in the sensor network field, but it is only recently

that real world deployments of sensor networks have begun to gather speed. In this

section we will describe some of these deployments, and gather what we can learn

and relate to the Hogthrob project from each deployment.

2.3.1 Great Duck Island

The Great Duck Island project6 (GDI) is a habitat monitoring application, devel-

oped for use on the Great Duck Island[41]. The goal of the project is to monitor

the nesting habits of the Leach’s Storm Petrel, which nests on this island. Ordinar-

ily researchers have visited the island outside the breeding season, to inspect the

abandoned nesting burrows without disturbing the Petrels. This way it was possible

to determine which of the burrows had been in use. However the researchers were

interested in how the birds behaved during the breeding season.
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To find out, a Wireless Sensor Network was deployed on the island in 2002.

This first deployment consisted of 32 Mica motes, equipped with the Mica Weather

Board, and was deployed in a 6 hectare area. The weather board contained a light

sensor, a humidity sensor, a temperature sensor, a pressure sensor, and a passive

infrared sensor[49]. Most of the motes were placed outside the burrows, to mea-

sure the weather conditions, while 9 of the motes were placed in the burrows, so

that they could measure the conditions close to the nest. All the motes were coated

with a thin parylene sealant to protect them against water. The sealant was tested

by submerging a running node in water for a week, which did not reveal any prob-

lems. The sensors on the Weather Board were not coated, as this would have pre-

vented them from operating correctly. The motes placed outside the burrows was

also enclosed in a ventilated acrylic tube, to give them further protection against

the weather.

Because of the size of the deployment area, the system was divided into sev-

eral networks. The sensor nodes were grouped into patch networks, each of which

contained a gateway node. This gateway node communicated both with the patch

network, and a transmit network. The transmit network transfered all the data from

the different patch networks to the base station. The base station was connected to

the Internet through a satellite link. The entire network was operated “off-the-grid”,

i.e. the energy for all parts of the deployment came from either batteries, or solar

power.

The major problems during the first deployment were:

• The sensors on some nodes reported out of bounds values. This seemed to be

caused by the sensors getting wet.

• Packets from a few nodes in the system never arrived, except when there was

packet loss from many of the other nodes in the network.

A close correlation exists between nodes where the sensors reported out of bound

values, and nodes which failed later in the experiment[56]. Some of the of the

networking problems were likely caused by clock skew. Nodes that experienced

excessive clock skew often failed later on in the experiment, so this might have

been caused by malfunctioning hardware too[56].

The second GDI deployment was carried out in the summer and autumn of

2003. This deployment was of a rather larger scale than the first, consisting of in

total 98 motes[55]. All of these motes used the Mica2Dot platform. 62 were burrow

motes, which were deployed in the burrows, while the remaining 36 were weather

motes. The burrow motes were equipped with a passive infrared temperature sensor

and a humidity/temperature sensor. The weather motes measured temperature,

humidity and barometric pressure. The network infrastructure was in large parts

similar to the infrastructure used for the first experiment.

Some of the lessons from the second deployment was:

• When designing the packaging for the nodes, one should take the antenna into

account. Either by having it integrated on a PCB, or by integrating it into the

packaging. That makes it easier to make the packaging waterproof.

• When deploying the node, a externally visible signal, such as turning on a LED,

is a help in determining if the node is turned on, and can save time.
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• When using batteries with a constant operating voltage, the remaining ca-

pacity cannot be estimated by measuring the battery voltage. Therefore other

measures are needed, such as energy counters in the application.

• Integrated data logging can help to recover data that is not transmitted off

the node properly. However the energy consumption implications needs to be

considered thoroughly, as writing to the external flash is a costly operation.

Lessons for Hogthrob

An important lesson to take from the GDI project, is that we should take care when

packaging the node, to protect it against the environment. Especially as the pig-pen

will be more hostile, with the ammonia in the air, than the out-doors at GDI.

The networking problems does not relate to our project, as we will use Blue-

tooth for the communication, and the networking problems within the GDI project

relates to the radio stack used on the Mica motes.

From the second deployment, we can use the first two lessons, i.e. remember-

ing the antenna when designing packaging, and having a visible indication that the

node is turned on. We do not expect to use constant voltage batteries, and we gather

more data than we can reasonably store on the node, so the last two lessons do not

relate to our deployment.

2.3.2 ZebraNet

The goal of the ZebraNet project is to track the movement of wild animals, specifi-

cally zebras[31]. Three revisions of custom sensor nodes have been developed and

tested, before settling on a node consisting of a GPS receiver, a long range (approxi-

mately 5 km) radio, a 4 Mbit flash and a Texas Instruments MSP430[62]. This node

is powered by a 2 Ah Lithium-Ion polymer battery which can power the node for 5

days, and which is recharged by solar cells.

The node obtains a position from the GPS receiver every 8 minutes. This po-

sition is stored in the 4 Mbit flash. To conserve RAM on the micro-controller, these

measurements are stored in flash directly after they have been obtained. To do this,

they make use of the way writes to flash work. Once a page in the flash have been

erased, all bits in it is set to high. A write can only change bits from high to low.

Since a single measurement only consumes 28 bytes and the flash must be written

in 264 byte blocks, the part of the page that should not be altered is filled with high

bits, so that it is unaffected by the write.

Once every two hours, the radio is turned on, to search for other nodes within

communication range. If one is found, as many samples as possible is transfered to

it. To prevent collisions each node has a designated time-slot, in which it is allowed

to offload data. The time-slot synchronization is maintained using the time infor-

mation embedded in the GPS signal. This time-slot system is only possible because

of the low number of nodes that are expected to be deployed.

An initial test deployment on 7 zebras have been carried out, at the 100 km2

Sweetwaters game reserve in central Kenya. The key problem observed during this

deployment was that while the range of the radio was specified to 5 miles, and

tests had confirmed that it would work up to a range of 1 mile, shorter ranges was

experienced in the test deployment. Also the duty cycling of the radio proved much

to restrictive.
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Lessons for Hogthrob

From ZebraNet we can learn that we should test the range of the radio, in an envi-

ronment that resembles the deployment environment as close as possible. This will

be important for us, as we need to have Bluetooth coverage for the entire pen.

The way the flash memory is used — writing several times to the same page —

might also be interesting for our application.

2.3.3 A Macroscope in the Redwoods

UC Berkeley and Intel research have jointly deployed a sensor network to provide

information about the environment in a 70 m tall redwood tree. The deployment

consists of 33 Mica2Dot motes, all installed in a single redwood tree, and each

fitted with sensors for humidity, temperature, photo-synthetically active radiation

(PAR), both direct and reflected. The nodes are programmed with TinyDB, and

measurements are obtained from all sensors every 5 minutes for 44 days[57]. To

provide additional security against lost readings, the nodes store the measurements

in the on-board flash.

The nodes are protected by an enclosure, that exposes the direct PAR sensor at

the top, while protecting the mote and the rest of the sensors from the environment.

However both the temperature and the humidity sensors require a certain amount

of airflow to produce accurate readings, so these are exposed at the bottom of the

enclosure. A wide cap provides protection against the environment for the bottom

of the enclosure.

The data is transfered to a Stargate system,7 which is connected to a GPRS

modem, offloading the results to an off-site database. Not all measurements were

offloaded in this way, some were offloaded manually by connecting a laptop com-

puter directly to the Stargate system.

Of the 1.7 million expected data points, only 820.700 were collected, giving a

49% yield. Many of the deployed nodes did not deliver any data to the system. This

is attributed mainly to the nodes running out of power during the pre-deployment

calibration. The batteries were not replaced prior to deployment, due to fears that

the disassembly of all the nodes would increase the likelihood of failure during the

experiment. Another problem was that some of the nodes ran out of flash storage

during the deployment, as the flash had not been cleared after the pre-deployment

calibrations, as this would also require disassembling the nodes. When this hap-

pened the nodes would still offload data to the Stargate system.

Lessons for Hogthrob

The major cause of node failure in this experiment, was because the batteries had

not been replaced since the pre-deployment calibration. Also, more data would

have been available, if the flash on the system had been cleared. To avoid making

the same mistakes, we should ensure that the batteries are at the full capacity when

we deploy the nodes. We will not be able to store all our measurements on the node,

so the lesson about clearing the flash is not important for our deployment.

7The Stargate system, is a PC-class single board computer featuring a 400 MHz ARM compatible

processor
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2.3.4 Deployment of Industrial Sensor Networks

At Intel they are investigating the use of sensor networks for predictive mainte-

nance[33]. Predictive maintenance is a term used to describe a family of technolo-

gies that provide information about the health of a piece of industrial equipment.

The focus at Intel have been on vibration analysis. To measure vibration, sensor

boards have been developed that can be connected to industrial class vibration

sensors. Two different node designs are used for the sensor network. One is the

Mica2, which is described in Section 2.1.1, and the other is the Intel Mote. The

Intel Mote, is a Bluetooth based sensor node, like the BTnode. However the Intel

Mote features a 32-bit ARM micro-controller, operating at 12 MHz[44], making it

one of the most powerful sensor network nodes available, with regard to processing

power.

The Mica2 and the Intel Mote cannot communicate with each other, because of

the different radios. Instead the network is grouped into clusters, which communi-

cate with one or several Stargate gateway nodes. The Stargate gateway nodes are

equipped with an IEEE 802.11b wireless networking card, through which they relay

the data from the mote, to a root Stargate node.

The sensor network is deployed in two industrial settings: In the central utility

building at a semiconductor fabrication plant, and aboard an oil-tanker sailing in

the North Sea. The oil-tanker is an especially harsh environment for a sensor net-

work, as it is constructed mainly of metal, limiting the reach of the sensor networks.

In both cases 5 vibration sensors are connected to each node. These are sam-

pled at 19.2 kHz, collecting 3000 samples in a short burst, which results in approx-

imately 6 KiB of data. For the Mica motes, this is more than can be kept in its 4 KiB

of memory. To solve this problem, an additional ATMega128 with 64 KiB of external

memory was used as a buffer between the Mica mote, and the accelerometers. This

was not necessary for the Intel Mote.

How often the motes samples the vibration sensors, depends on the deploy-

ment. In the deployment at the central utility building, the 3000 samples are ob-

tained once each hour. For the oil-tanker experiment the nodes are grouped into

two deployments, where the starboard deployment waits 18 hours between sam-

pling the sensors, and the center deployment waits 5 hours.

In the central utility building, the Intel Mote with the Bluetooth network pro-

vides an average transfer time 10 times lower than that of the Mica motes. This

can in part be attributed to the difference in bandwidth between the two radio de-

signs, but the transport protocol also plays a part in the low transfer rate, due to an

aggressive throttling algorithm.

For the oil-tanker deployment, results were delivered for at least 80% of the

duration of the experiment. The shortest lasting node operated for almost a month,

which was more than the estimated 21 days.

Lessons for Hogthrob

From these deployments we can learn that it is possible to use Bluetooth for sen-

sor networks, and that it in some cases is the better choice. The Intel Mote, ends

up using less current than the Mica2 motes, due to the higher transfer rate[44].

While this comparison is not completely fair — the protocol used to offload the

data, played in favor of the Bluetooth radio — it never the less shows that for high
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bandwidth applications Bluetooth is able to compete.

2.3.5 Wired Pigs

Wired Pigs[42] is a study of existing wireless sensor network software and hard-

ware, to evaluate the usability of these when computer science expertise is limited.

The project seeks to measure the body temperature of pigs, to find out if the

pigs suffer from temperature induced stress. The body temperature is measured by

sensor nodes on the pigs. To show if a change in body temperature is caused by the

surroundings, a network of sensors in the stables, measure the humidity, light and

temperature.

The sensors on the pigs — called the PiggyBack network — are Mica2Dot

motes, with two thermistors attached. These thermistors are surgically implanted

into the pig, one just under the skin, and one deeper to measure the core tempera-

ture of the pig. The thermistors are attached to the mote with wires, and the mote

is placed in a bandage collar around the neck. 4 male pigs were selected for the

PiggyBack network.

The network of environmental sensors — called the Environment Network —

consists of 4 Mica2Dot motes, measuring the temperature close to the pigs, two

Mica2 motes measures the humidity and temperature for the stable in general, and

a single Mica2 mote placed outside the stables, measures light and temperature.

The PiggyBack network used TinyDB for the data acquisition, while the En-

vironment Network used the commercial Sensicast Developers Version, a software

package that allows the user to create sensor networks in a user friendly fashion.

Because the motes use different software packages, the two networks were not able

to communicate with each other. Therefore two base stations were required. The

base station for the PiggyBack network, was placed so that the maximum commu-

nication distance was 5 m. This was required as the individual stalls housing the

pigs, were constructed of steel tubes, and thus lowered the communication range a

lot. The base station for the Environment Network was placed outside the stables,

with the longest communication range required, approximately 10 m.

The performance of the PiggyBack network was in general poor, as the highest

rate of obtained sensor readings experienced was 30%. Also some of the surgi-

cally implanted thermistors came loose during the experiment, forcing the prema-

ture take down of the PiggyBack network. The researchers speculate that the low

amount of sensor readings is caused in part by the steel tubes around the pigs,

and in part by software problems. On the other hand, the performance of the Envi-

ronment Network was good, as it experienced over 90% sensor reading reception,

during the deployment.

The conclusion of the paper is that the TinyDB software package is difficult to

use without a computer science background. It is however much more flexible than

the Sensicast Developers Version.

Lessons for Hogthrob

The environment for our network will be quite different, with a large pen housing

several sows. This means that we will not have the same problems with the radio

range, as there are no metal around our sows. It also means that our solution for

mounting the node needs to be more durable, as the sows fight with each other.
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The Sensicast software package seems to be primarily oriented around temper-

ature and energy monitoring, and predictive maintenance. Furthermore it does not

seem to be compatible with our BTnodes, so this makes it unsuited for Hogthrob.

Using TinyDB is not an option either. TinyDB relies on being able to offload the

measurements, immediately after they have been obtained. We need a rather high

sample rate, meaning that we would not be able to turn off the Bluetooth radio,

which again means that we would not be able to power the nodes for the duration

of the experiment.

2.4 Previous Farm Experiments

Apart from directly sensor network related experiments, others have performed ex-

periments that resembles what we want do to closely. In this section we will discuss

two experiments: A previous heat detection experiment on sows, and a health state

monitoring experiment on cows.

2.4.1 Automated Oestrus Detection on Sows

The inspiration to the heat detection approach employed in this project, comes from

an experiment that sought to automatically detect the start of the oestrus of sows

using either body temperature, vaginal temperature or physical activity[26].

For the body temperature experiment a thermistor was implanted in the ear

base of the sows, and connected to a data-logger that measured the temperature

every 30 s. This experiment was carried out on 21 individually housed sows.

For the vaginal temperature experiment, a small data-logger was inserted into

the sows vagina, sampling the temperature every 16 seconds. This experiment was

carried out on 8 individually housed sows.

For the physical activity a small accelerometer[59], was attached to the sow

with a neck collar. The acceleration was measured 255 times per second, and a

counter was incremented each time the acceleration was greater than 10 m

s
2 . This

experiment was conducted on 4 individually housed sows.

It was found that the both of the temperature based experiments showed sig-

nificant changes in temperature close to the onset of oestrus. However the activity

experiment showed a significant rise in the activity of up to 1000%, at the start of

the heat-period. We hope to be able to show a similar change in the activity when

sows are housed together.

2.4.2 Health State Monitoring on Cows with Bluetooth

The Danish Institute of Agricultural Sciences8 have in collaboration with Blip Sys-

tems9 developed a system for monitoring the health state of cows. Nothing about

the infrastructure have been published, apart from newspaper articles[34]. The sys-

tem contains 3 different kinds of nodes. Two to monitor the state of the cow, and

one to provide the infrastructure for the experiment.

Of the two nodes monitoring the cows, one node measures if the cow is stand-

ing up, or laying down, using a gyroscope. This node only reports when the state

changes. The other node measures the pulse and body temperature of the cow, and

8 �����������	��
	
	
���.��	�!1	�� 4�
���
9 �����������	��
	
	
��
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offloads these results regularly. This node is also used for determining the position

of the cow, using measurements of the transmission strength from the infrastructure

network. Both of these nodes are powered by batteries. For the gyroscope node, a

normal primary battery is used, as this node does not transmit often. It is expected

that the battery can sustain the node for 2 years. The pulse and body temperature

nodes have a rechargeable battery that should last for 6 months. The nodes are

mounted in a standard casing at the neck of the cow.

The infrastructure network consists of 15 nodes, placed in the ceiling of the

1,200 m2 stable. These nodes are organized in a mesh-network, where only 4 of the

nodes are connected to the data-logging server.

It is hoped that the system will be able to tell the farmer about the health

state of each cow, alerting him to potentially sick cows. Also, just as with sows, the

activity levels of cows change during the heat-period, so this system could also be

used to detect heat-periods of the individual cows.

The goal is to develop the system commercially, with an expected cost of 700

DKK per cow.

2.5 Summary

In this chapter we have provided an overview of some of the available sensor net-

work nodes, and described the TinyOS and BTnut operating systems that are specif-

ically targeted for sensor networks.

We have provided an overview of some of the interesting sensor network de-

ployments that have been carried out, and described the lessons that we can use

from these deployments.

The lessons we take with us from the previous deployments are:

• Make sure to protect the node properly against the environment. If possible

avoid external antennas, and other stuff that would require holes in the pack-

aging for the nodes.

• Test the range of the communication where the application is going to be de-

ployed, as the range very much depends on environment.

• Make sure that the batteries used when the nodes are deployed, are at their

full capacity.

The farm experiments, described in the previous sections, tells us that our appli-

cation is interesting, as others have tried to do the same. The cow application in

particular tells us that there might be a commercial potential in our application.

However the price dynamics are not the same when breeding pigs, as they are

when breeding cows. So the success of an integrated heat detection chip for sows,

is entirely dependent on the price being in the 10 DKK range.

A trend in these deployments is that most of them are data collecting experi-

ments, that allows researchers from other fields to get otherwise unavailable data.

While this is a worthy cause, it does not provide a good business case for sensor

networks. However deployments such as the Industrial Sensor Network deployment

(see Section 2.3.4), could be the first steps towards this. Likewise the future stages

of the Hogthrob project could provide such a business case.
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Chapter 3

The First Hogthrob Experiment

In this chapter we will describe the goals and approach of the first Hogthrob exper-

iment. The main goal is to collect data to construct a model, which can be used to

detect heat from the activity patterns of the sows. We will also describe the different

kinds of ground truth we are going to collect during the experiment.

3.1 Goal

The overall goal of the Hogthrob project is develop a method whereby sensor net-

work technology can be used to track sows, and detect the start of their heat-period.

In the first phase of the project we need to establish a model for detecting the

start of the heat-period for the sows. Others have observed a 1000% increase in

the activity for individually housed sows, during their heat-period[26]. However,

in Denmark the current law prohibits individual housing of sows, so we need to

re-validate this result for sows housed together in large pens. The sows establish

themselves in a hierarchy, and a sow’s position in this hierarchy might affect how

clearly she displays signs of heat. It is therefore not given that the previous results

can be re-used.

To re-validate the previous experiment we want to monitor the activity of the

sows, with the purpose of establishing a model that can be used to determine when

sows are in heat. Establishing this model is beyond the scope of this thesis, but will

instead be carried out at KVL. To make it easier to establish this model we wish

to gather as much data as possible. To validate our measurements we also need to

collect some absolute form of truth — our ground truth. This ground truth will —

amongst other things — provide information about the heat-periods of the sows.

The experiment will be conducted at Askelygaard, outside Roskilde, and will

run from the 21st of February 2005, to the 21st of March 2005. The nodes will be

installed the 28th February 2005, i.e. on day 7 of the experiment, and they will have

to collect data for at least 20 days. Five sows will be selected for the experiment.

3.2 Method

For the experiment we will use the BTnode revision 2.2 developed by ETH Zürich,

to gather the data. We have chosen these nodes, as we already have previous expe-

rience in using these, but also because we have enough of these nodes to carry out

the experiment. This choice helps keeping the cost of the project low.

If cost was not an issue, it would make sense to choose another platform, as

the radio on the BTnode, is very energy consuming, has a high startup time, and
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high discovery and connection times[32]. While much of this is true of Bluetooth

in general, the ROK 101 007 modules used on our BTnodes were the first commer-

cially available Bluetooth modules from Ericsson[32]. The energy consumption and

startup time have been improved since then, making Bluetooth a better choice in

sensor networks[44], but it is still not as flexible as the simpler radio systems used

on other sensor nodes.

In the previous heat detection experiment a device that measured the accel-

eration was attached to a collar around the neck of the sow[26]. The acceleration

was sampled with a rate of 255 Hz. Every time the acceleration was above 10 m

s
2 ,

one unit was added to a counter. It is not clear from the publication how often this

counter was reset, nor when the data from this counter was offloaded.

As we need to re-validate the findings of this previous experiment, we choose

to approach the problem in the same way: We will use accelerometers to detect the

activity of the sows, and place these in a collar around the neck of the sow. However,

we have decided against aggregating the measurements as described above, as this

will discard a lot of data, that might be useful when designing an algorithm to detect

the heat-period. Instead we want to sample at 4 Hz, and keep all of the samples. The

reasoning behind this sample rate, is mainly to lower the energy consumption. At a

sample rate of 255 Hz, we would gather an enormous amount of data which needs

to be offloaded from the node, all of which will cause a higher energy consumption.

Also it has been shown that frequency of the acceleration in the human upper body

while walking, is in the range of 0.8 – 5 Hz[12]. As the sows does not move very

fast most of the time, we decided that a sample rate of 4 Hz should be sufficient.

3.2.1 Ground Truth

Besides the acceleration data, we want to collect several other data sources to es-

tablish a ground truth. First of all we need to know when the heat-period occurs,

but we would also like to be able to determine the cause of specific events in the

gathered acceleration data.

To find the heat-period, we use 3 different manual heat detection methods,

which together will provide a very good accuracy of when the heat-period occurs.

The 3 methods are:

• Back Pressure Test (BPT)

• Vulva Reddening Score (VRS)

• Rectal Temperature (RT)

The BPT and VRS methods will be described in detail in the following sections. For

the rectal temperature test, a slight change in temperature indicates that the sow is

in heat.

The manual detection methods is conducted from day 21 of the experiment

(the 13th of March) at 07:00, 14:00 and 21:00, and until one day after the sow

stops showing the standing reflex.1

Another source of ground truth is the boar pen visit. A separate pen is located

so that the sows have all but physical access to a boar. When they approach the

boar, their RFID ear tag is read, and stored together with the time of their visit.

1The standing reflex is when the sow stands stiffly, ready for the boar to mount her. Sows show this

behavior when they are close to, or in heat.
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An increase in the number of times a sow approaches the boar during the day, is a

good indication of heat. The results from this test will be used to further improve

the accuracy of the heat detection.

To be able to explain specific patters in the data, we also wish to monitor the

pen using 4 cameras. These cameras will cover the parts of the pen, where the sows

are active, such as the feeding station etc. The camera installation will be described

in detail in Section 8.3.

3.2.2 Back Pressure Test

The back pressure test (BPT)[15] is a simple test, and also the one the farmer uses

to determine if a sow is in heat. The test result is a score between 1 and 6, and the

scores are given as follows:

1. The sow flees when touched, or within 5 seconds of being touched.

2. The sow allows the person performing the test to press the knee against her

side, and to press her on the back. She does not allow the tester to sit on her

back.

3. The sow shows the standing reflex when the tester sits on her back, but flees

during the test.

4. The sow shows the standing reflex without the ears erected, allows the tester

to sits on her back, but vocalizes.

5. The sow shows the standing reflex without the ears erected, allows the tester

to sit on her back, and does not vocalize.

6. The sow show the standing reflex with the ears erected.

When the score is in the range from 4 to 6, the sow is considered to be in heat.

3.2.3 Vulva Reddening Score

For the vulva reddening score (VRS)[15] the color of the vulva is used to detect

heat. The score is divided into 4 categories:

0. Pale red

1. Pink

2. Red

3. Dark red

The colors are matched against previously selected pictures of other sows.

3.3 Summary

In this chapter, we have established the goal of the first Hogthrob experiment, i.e.

to gather data about the activity of sows, so that a heat detection model can be

established. We have decided that the node platform used to monitor the activity

will be the BTnode revision 2.2, and the sensors that measure the activity will be ac-

celerometers. We have also described the 5 sources of ground truth will be collected

during the experiment:

• Back Pressure Test
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• Vulva Reddening Score

• Rectal Temperature

• Boar Pen Visit

• 4 cameras that cover the parts of the stables where the sows are active.

In the next chapter we will evaluate different kinds of accelerometers, and in gen-

eral prepare the node hardware for deployment in the stables.
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Chapter 4

Node Hardware

In this chapter we will explore the different kinds of accelerometers that are avail-

able, and how these can be connected to the node. We will also explore how to

modify the node, to bring down its energy consumption.

For the accelerometers we will have to choose which accelerometers to use,

and we will need to design and produce a sensor board containing these.

To make the node ready for deployment, we will have to solder new compo-

nents onto some of the nodes, and replace other components. The goal is to make all

the nodes similar, and to minimize their energy consumption as much as possible.

4.1 Sensor Board

In this section we will discuss the requirements of the sensor board needed for the

experiments. We will select the sensors we wish to have on the board, and select

the specific components to be used. To select the components, we look at following

characteristics:

• The resolution and range of the sensor.

• The availability of the sensor.

• The energy consumption of the sensor.

• The voltage required for the sensor to function.

• The interface that allows the sensor to communicate with the node.

From these key characteristics it should be possible to decide which components to

use on the sensor board.

4.1.1 Accelerometers

To measure the activity of the sows, we choose to use an accelerometer. An ac-

celerometer measures the acceleration, and are used in a multitude of applications.

In cars for the airbag system, as vibration sensors in washing machines, etc. Several

types of accelerometers are available. Some have mechanical acceleration detec-

tion, some use piezo-electric materials, but recently integrated circuits (IC) con-

taining accelerometers are being produced as well. We will focus on these, as they

provide the smallest form factor, and because they will be easier to integrate with

the node.

When creating an accelerometer in an IC, a process called Micro Electro-Mecha-

nical System (or MEMS) is usually employed[45]. In a common design the sensing

part of the accelerometer is a block of silicon that is suspended inside the IC so that
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it moves on a spring, when the IC is exposed to acceleration. Some “fingers” are

attached to the block that moves, and in conjunction with the rest of the IC, these

create a capacitor. The capacitance of this capacitor changes when the “fingers”

moves, and this change is measured and converted inside the IC.

To make it simple to connect the accelerometer to the BTnode, we will focus

on accelerometers that can be powered by 3.3 V, as this is the voltage provided by

the voltage regulator on the node.

In the following sections, we will discuss the most important of the character-

istics for the accelerometers, i.e. the range, the interface, the energy consumption

and startup time.

Range Options

The most important parameter of the accelerometer for our experiment, is the range

of acceleration it can measure. The acceleration experienced when a human walk

are in the range of −2 – 2 g [12, 18] when measured at the tibia. We assume that

normal movements of a sow will be in the same range, as we measure on the head,

where the accelerations are usually lower. However when the sows are fighting or

startled we expect a higher acceleration. So if we get an accelerometer with a range

of approximately −5 – 5 g, there should be few cases where the acceleration would

be out of range for the accelerometer.

Interface Options

The interface determines how to read the acceleration measured by the accelerom-

eter. The most common types of accelerometers are analog, where the voltage out-

put of the accelerometer is proportional to the acceleration. This output can then

be converted to a digital value, either by an external Analog-to-Digital Converter

(ADC), or by an ADC included in the MCU.

A few accelerometers have a Pulse Width Modulated (PWM) output. In this

case, the output from the accelerometer is digital. The MCU must measure the time

from a rising flank in the digital signal, to a falling flank. This time, in relation to

the time between two rising flanks can then be used to calculate the acceleration.

The accuracy of both of these interfaces are determined by the accelerometer,

but also by the circuits that convert the signal to a digital reading. The accuracy

of an analog accelerometer is limited by how good the ADC in question is, and

the resolution of the timer in the MCU will limit the accuracy of a PWM based

accelerometer.

The last option is to have a digital interface, such as Serial Peripheral Interface

(SPI), or Inter-IC Bus (I2C). If the MCU does not have support circuits for these

interfaces, they can be emulated at the software level, through the use of general

purpose I/O pins (GPIO). A digital interface has the advantage that the accuracy is

not limited by parameters outside of the IC.

Energy Consumption and Startup Time

The energy consumption of the accelerometers is also important. The energy con-

sumption when a sample is obtained is of course important, but in order to obtain

the lowest possible energy consumption we must duty cycle the accelerometer by

powering it down, or putting it into a sleep-mode, if one such is available. When the
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accelerometer is turned on we must wait for a short period, before reading samples

from it. This is because the accelerometer needs to initialize, and charge its filter ca-

pacitors. Therefore the amount of time we can leave the accelerometer powered off,

depends on the amount of time it needs to charge its filter capacitors. An optimal

accelerometer for us, has as short a startup time as possible.

4.1.2 Accelerometers from Analog Devices

Analog Devices produces MEMS accelerometers with analog output or with PWM

output. In the summer of 2004, when we selected the accelerometers, the only ac-

celerometer with a range of 5 g, the ADXL320[4], was not yet released. The closest

was either a 2 g (the ADXL202[2]) or a 10 g (the ADXL210[3]) accelerometer.

However Analog Devices was kind enough to provide us with pre-release samples

of the ADXL320. The ADXL320 is has two analog outputs, one for the X-axis and

one for the Y-axis of the accelerometer[4].

4.1.3 Accelerometers from Freescale Semiconductors

Freescale Semiconductors (previously Motorola) produces analog accelerometers,

which resemble the ones from Analog Devices. The only ones that were available

in the summer of 2004, had a range of 1.5 g (the MMA6260Q[23]) or 10 g (the

MMA6231Q[22]). Both of these are dual-axis accelerometers.

4.1.4 Accelerometers from STMicroelectronics

STMicroelectronics’ line of accelerometers with analog output resemble the offer-

ings from both Freescale and Analog Devices. However all the accelerometers from

STMicroelectronics have an electronically selectable range, which can be set to ei-

ther ±2 g or ±6 g. The accelerometers come in 2-axis or 3-axis versions. At the

time, STMicroelectronics was the only manufacturer we found, which had a 3-axis

accelerometer available.

The LIS3L02DS is a 3-axis 2 g/6 g accelerometer which can communicate with

the MCU either through the I2C bus, or through the SPI bus[54]. Both these busses

are supported by the ATMega MCU on the BTnode. Apart from having 3 axes, this

accelerometer has other interesting features: It can be programmed to issue an

interrupt, whenever the acceleration of one of the axes are above or below a certain

threshold, and it also has a power down mode. The LIS3L02AS4 is basically the

same accelerometer as the LIS3L02DS, but with an analog interface[53].

4.1.5 Comparison of the different Accelerometers

In Table 4.1 the accelerometers described above are listed together with their most

important characteristics, taken from the respective datasheets.

As can be seen from this table, the specifications does not differ greatly. We

choose to use both a 2-axis and a 3-axis accelerometer. The 2-axis because these are

the most common parts, and therefore the cheapest, and the 3-axis in order to have

an accelerometer that can measure all three axes.

For the 2-axis accelerometer we chose to use the ADXL320, because it matched

the range we wanted to measure. For the 3-axis we chose the LIS3L02DS, because

it was digital and because it has 12-bit precision, where the ADC in the BTnode only

has 10-bit precision. The LIS3L02DS has a high startup time, and if we bandwidth
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Table 4.1 – Comparison of different accelerometers

Energy Startup
Product Code Axes Range Interface

consumption time

ADXL202[2] X, Y ±2 g PWM 0.6 may

ADXL210[3] X, Y ±10 g PWM 0.6 mA See Note

ADXL320[4] X, Y ±5 g Analog 0.48 mA

MMA6260Q[23] X, Y ±1.5 g Analog 1.2 mA 14 ms

MMA6231Q[22] X, Y ±10 g Analog 1.2 mA 2 ms

LIS3L02DS[54] X, Y, Z ±2 g/±6 g Digital 1 mA 50 ms

LIS3L02AS4[53] X, Y, Z ±2 g/±6 g Analog 0.85 mA See Note

Note: For some of the accelerometers, the startup time depends on the size of an attached capac-

itor. For the ADXL202 and ADXL210 the formula to calculate the startup time is 160 ms/µF ×

Cfilt + 0.3 ms, where Cfilt is the value of the capacitor. For the ADXL320 the formula is

160 ms/µF × Cfilt + 4 ms. For the LIS3L02AS4 the startup time is 550 ms/µF × Cload +

0.3 ms.

the ADXL320 to 10 Hz, it will also have a high startup time. However their power

consumption is low enough that it should not matter.

4.1.6 Other Possible Sensors

Since we are going to create a sensor board specific to our application, we might

as well consider if we wish to include more sensors, than just the accelerometers.

As the node and sensor board needs to be very well protected from manure, water

and the like, we do not wish to have any sensors that needs to be exposed to the

surroundings. This requirement narrows the range of relevant sensors.

A sensor that still would be relevant is a humidity sensor. A humidity sensor

could be used to detect if the node electronics is exposed to water. If this happens,

the node could send out a warning that it most likely would have to be replaced

soon.

Many different humidity sensors exist, but most of them have an analog in-

terface. To measure the humidity, power must be pulsed through them while the

resistance is measured. The measured resistance of the humidity sensor is propor-

tional to the relative humidity of the air around the sensor. Such a sensor was used

on the Mica Weather Board v1.0 which was used in the first deployment of Great

Duck Island project[49]. To interface the sensor to the MCU, a lot of control elec-

tronics had to be used. Also for the Great Duck Island project, they experienced a lot

of problems with this kind of sensor, ranging from crashing the node to draining the

battery. This was most likely caused by the sensor getting wet, but still the external

electronics required makes this solution impractical for our project.

Another solution is to use a digital humidity sensor such as the SHT11 from

Sensirion, which is the humidity sensor used for the Mica Weather Board v1.5[49].

This sensor provides readout of the sensor value through an I2C interface, making

it much more suitable for integration with a MCU.

As the cost of this sensor is around 150 DKK, and its use is limited, we decided

against using it.
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Figure 4.1 – The accelerometer sensor board

(a) The PCB layout for the

sensor board

(b) The actual sensor board,

with the two accelerometers

soldered on

4.1.7 Manufacturing the Sensor Board

We initially expected to use a simple bread board for the sensor board with the two

accelerometers soldered onto. However the ADXL320 is packaged in a 4 × 4 mm

lead frame chip scale package (LFCSP[1]) with 16 solder pads. It is not possible to

solder these chips using a soldering iron. The LIS3L02DS is packaged in a 24-pin

SMD package, which can be soldered by hand.

The Technical University of Denmark (DTU) kindly agreed to manufacture both

print boards, and to solder the accelerometers onto these. The resulting PCB layout

and sensor board can be seen in Figure 4.1.

The way the two accelerometers are placed, the X-axis of the ADXL320 points

upwards in the picture, and the Y-axis points to the left. For the LIS3L02DS, the X-

axis points to the right, while the Y-axis points upwards. To make the two accelerom-

eters easier to compare, we switch the wires for the X and Y-axis on the ADXL320,

so that the X-axis on the ADXL320 corresponds to the X-axis on the LIS3L02DS, but

with the sign switched, and the Y-axis will correspond directly to each other.

For the ADXL320 we needed to choose the value of the two filter capacitors.

The filter capacitors filter out noise from the accelerometer readings, and thus se-

lects the bandwidth of the accelerometer. Since we needed to obtain samples from

the accelerometers with a sample rate of 4 Hz, we choose capacitors with a value

of 0.45 µF, which gives us a bandwidth of 10 Hz.

We decided to make connections on the sensor board for the self test pin on

both of the accelerometers, since this could aid us when testing the boards. For the

LIS3L02DS we also decided to leave connections for all the data-pins, so that we did

not have to choose which of the interfaces to use, when manufacturing the board.

We connected the power supply of each of the accelerometers to a spare general

purpose I/O pin on the ATMega128. This way we could turn each accelerometer off

completely. The current that can be sourced from a single pin of the ATMega128

micro-controller is well within what is required to drive the accelerometers[4, 8,

54].
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4.2 BTnode Modifications

To make the BTnodes ready for deployment, we had to make some changes to them.

These changes were made to ensure that all nodes behaved the same way, and to

lower their energy consumption as much as possible.

All of the necessary changes to the nodes were carried out by DTU.

4.2.1 Reducing Energy Consumption on the Nodes

During the initial phase of the project, we conducted some simple experiments, in

order to determine if the goal of having the node run for 20 days on battery power,

was obtainable.

This initial experiment was conducted by connecting the BTnode to a 4.5V

power supply, and an ampere-meter. A modified 798�:!'<; application was uploaded

to the node, and the current consumption was measured. The 798�:!'<; application

simply toggles one of the LEDs on the node, and our modification was to have a

longer interval between the toggles, to allow the ampere-meter to settle in between.

The current consumption measured from this experiment was in the range 12

– 13 mA. If we assume that we are going to have 4 rechargeable AA batteries on

the node with a capacity of 2000 mAh the batteries will last for about 7 days, if

we keep the node idle all the time. As the experiment should last 20 days, we need

to cut the energy consumption down to less than a third, to have energy for both

sampling the accelerometers, and offloading the results.

The first problem we located was that the port of TinyOS to the BTnode only

entered the idle sleep-mode[36]. Since the 7�8�:!'<; application only uses the timer,

the ideal sleep-mode for the node would be power-save[8]. Fixing this problem

in the TinyOS port (see Section 5.2 for the implementation details) lowered the

current consumption to 7.3 mA. Disconnecting the BTnode from the programmer

lowered the current consumption further to 5.5 mA.

According to the datasheet the ATmega128 should only use about 9 µA[8]

when in power-save mode at 3.3 V. The reason we looked at the current con-

sumption at 3.3 V is because this is the voltage supplied by the voltage-regulator.

When the MCU draws 9 µA, the voltage regulator powering the node uses around

0.11 mA, because of the ground current in the voltage regulator[46]. So we should

be able to lower the current consumption further.

Martin Leopold discovered that if the 0 Ω resistor providing power to the ex-

ternal memory was removed, the current consumption would drop. Removing this

resistor will disable the external memory, leaving the node with only the 4 KB in-

ternal memory. However, the current consumption dropped to 0.5 mA so this was a

necessary tradeoff.1 With this energy consumption the node should be able to func-

tion for about 160 days. This estimate will drop when the node needs to sample the

accelerometers and use the Bluetooth radio.

While the node is only using 0.5 mA with the listed modifications, it still does

not compare too well with the 0.11 mA we assume it would use. However there are

other components that consume energy:

• There is a second voltage regulator used to power the Bluetooth module, how-

1We discovered after the deployment that if the external memory was initialized properly, the current

consumption would go down almost as much as when removing the 0 Ω resistor.

38/120



4.3: Summary Node Hardware

ever it is turned off in this experiment, and thus should draw only 1.5 µA.

• There is also a voltage divider, used for the battery charge indicator. This volt-

age divider is made of a 2.7 kΩ and a 10 kΩ resistor, and will therefore use

0.26 mA at 3.3 V.

With these components adding to the energy consumption, it does not seem unrea-

sonable that the node uses 0.5 mA when in power-save mode.

So to sum up, the only hardware change necessary, was to disconnect the 0 Ω

resistor to the memory module. With this modification in place, we could not rea-

sonably expect the energy consumption to be any lower.

4.2.2 Voltage Regulator for the Bluetooth Module

On some of our nodes, there was a second voltage regulator, which controls power

to the Bluetooth module. The Bluetooth module itself has a pin called ON, which

can be used to turn the module on and off. According to early versions of the

datasheet, it should be enough to pull this pin to a logical low, to turn off the

module.

However the designers of the BTnode noticed that the module still consumed

power, even when it should be turned off. Therefore they included the second volt-

age regulator, to ensure that the module could be turned off completely. If one

looks at later versions of the datasheet, they state that the pin called VCCio should

be pulled low together with the ON pin. But since the VCCio pin is connected di-

rectly to the power source for the Bluetooth module, we will need the extra voltage

regulator in order to turn off the module properly.

4.2.3 Battery Charge Indicator

As previously mentioned the BTnode features a battery charge indicator. This indi-

cator is a voltage divider that is attached to an ADC pin on the MCU. The voltage

divider is made of a 2.7 kΩ and a 10 kΩ resistor. Since the ADC on the node can mea-

sure up to 3.3 V, the maximum voltage that can be measured by the voltage divider

is 4.2 V. If we use 4 cells to power the node the initial voltage from rechargeable

batteries is going to be around 5.7 V, and when the battery voltage is down to 4.2 V,

they are close to being completely depleted. Because of this we want to replace the

voltage divider. If we replace the 2.7 kΩ resistor, with a 10 kΩ — so the voltage

divider halves the voltage — we can measure up to 6.6 V.

It is not possible to turn off the voltage divider, so this change will also give us

a small benefit in the energy consumption. The original voltage divider was using
3.3 V

12.7 kΩ
= 0.260 mA, but if the resistors are both 10 kΩ, the voltage divider will only

consume 0.165 mA.

4.3 Summary

In this chapter we have selected two accelerometers for our custom sensor board,

and manufactured sensor boards for use in the experiment. The accelerometers

were chosen primarily because they match the range of accelerations we expect to

encounter in the experiment.

We have also lowered the current consumption of the BTnode, from initial

measurements of 13 mA, down to 0.5 mA. The high current consumption was due
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in part to inefficient sleep-mode usage in the TinyOS port to the BTnode, and in

part due to the external memory, which we disabled.

Lastly we have discussed some changes which are needed to make the nodes

ready for deployment. We have ensured that all nodes are equipped with a separate

voltage regulator so that the Bluetooth module can be powered off completely, and

we have changed the battery charge indicator to support a wider range of battery

options.

In the next chapter we will look at the different software parts we will need to

support the application.
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Chapter 5

Low Level Software

TinyOS have been ported to the BTnode by Martin Leopold[36]. In this chapter we

will describe the changes and additional components that is needed to use this port

for our application. We need the following to support the application:

• Components to obtain measurements from the two accelerometers.

• A method to control the power-management features of the ATMega128, as

described in Section 4.2.1.

• Components to control power to the Bluetooth module, and communicate with

a base station PC.

• A way to store data on the node, so that we can duty cycle the Bluetooth radio.

In the following sections we will address each of these points in turn.

5.1 Accessing the Accelerometers

To allow the application to obtain readings from the sensors, we need to create an

interface to access the sensors. But first we need to choose how to interface with

the sensors.

5.1.1 The ADXL320

The ADXL320 outputs the acceleration as a voltage. Therefore we connected the

output pins for the X and Y-axis to two of the ADC pins on the MCU. So to obtain

a reading from the accelerometer, we need to query the ADC circuit in the MCU. A

component that does exactly this is already present in TinyOS.

However this component is not very well documented, and very complicated.

It requires the user to create an interface for each axis of the accelerometer, and

during the initial experiments with it, it seemed to return wrong results. Given the

complexity of the code, we decided to implement a simpler solution, which is easier

to debug and customized for our needs.

The interface to our component is as simple as possible, and can be seen in

Figure 5.1. Apart from the =(>+?4@BA*:4%C@9)B)0DB8 interface the @BEBF<G4@H)()0D<80I module also

implements the :!'*:CJ , %�J+$4KBJ and %CJ+?ML commands from the NMJ<OBP<?0'<J(K<?B8 interface,

which is used to turn the accelerometer on and off. It also ensures that the startup

time requirements are honored. Because we use 0.45 µF filter capacitors, the startup

time is 80 ms.
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Figure 5.1 – The interface to the 2-axis accelerometer

:!'<J<D4K<QB$+)MDR=(>�?M@BA*:4%C@H)()0DB8TS
)0?CUBU*$0'+OVK+D�%!W98MJ+X0JTY<D4JBE+$MJ+$[Z�\^]
$+%�&('*)_D4`+DM'<JaK+D�%CW�8MJ+X0JbOB$4J+$4c<DB$4O4&dZ#W*:�'<Jfe!g<X0JaA+$4A*:(%ih

W*:!'<J^e!g<X0Ja&+$4A*:(%B\^]j

5.1.2 The LIS3L02DS

The LIS3L02DS can be connected to the MCU in two different ways. Either through

the I2C interface (a subset of what Atmel calls TWI) or through the SPI interface.

Again there are components for both of these interfaces included with TinyOS.

We decided to use the TWI interface for the communication, as the SPI interface

is used to communicate with the radio on the Hogthrob V0 platform. Since we will

want to connect the accelerometer to this platform later in the Hogthrob project,

using the TWI interface was the obvious choice. However the TWI interface caused

serious reliability issues1, causing us to switch to the SPI interface instead.

Again a component for using the SPI interface, already existed within the

TinyOS project. The component in this case was very specific, and would have to be

modified somewhat in order to work with the SPI interface on the accelerometer.

When one communicates with a SPI device, the SS line (Slave Select) to the device

one wishes to communicate with must be set to a logical zero. This signals to the

device that we wish to communicate with it. Usually the device listens for as long

as the SS line is low, but this accelerometer, only listens long enough to receive

one command, and send back the result. This did not blend well with the TinyOS

component.

Because of this, we opted to develop our own component, which suited our

needs. The interface for the digital accelerometer is kept just as simple as for the

analog accelerometer, and can be seen in Figure 5.2. Again the N4=BI+k4EH:CYH:�NMl*m!I mod-

ule also provides the NMJ<OBP<?0'<J(K<?B8 interface, allowing the application to control the

power to the accelerometer. And this interface also ensures that the accelerometer

is not accessed before the startup time of 50 ms have passed. We selected the 2 g

range on this accelerometer, so that we will measure both with a 2 g range and a

5 g range.

5.2 Power Management

As described in section 4.2.1, there is no support for power management in the

BTnode port of TinyOS, and this is required for the node to survive the 20 days of

the experiment.

The ATMega128 has 6 different sleep-modes. Of these only 3 are interesting

for our purpose. These are idle, ADC Noise Reduction, and power-save. The others

1Usually the problems would start with the Bluetooth communication speed dropping to 2 KiB/s,

where it normally was around 20 KiB/s. The node would continue with its tasks, but after a while it

would get stuck entirely. When first encountered these symptoms started happening after approximately

one hour. After changing parts of the TWI interface code it would take approximately a day for the

problem to appear. We did not have a JTAG interface (which is used to perform in-system debugging),

so it was impossible to find the cause of these problems.
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Figure 5.2 – The interface to the 3-axis accelerometer

:!'<J<D4K<QB$+)MDR=(n<K<DBD4@(AH:(%C@9)()MDB8aS
)0?CUBU*$0'+OVK+D�%!W98MJ+X0JTY<D4JBE+$MJ+$[Z�\^]
$+%�&('*)_D4`+DM'<JaK+D�%CW�8MJ+X0JbOB$4J+$4c<DB$4O4&dZ�:�'BJ^e!gBXMJaA+$4AH:(%oh

:�'<J^eCgBXMJa&+$4AH:(%oh
:�'<J^eCgBXMJTp<$4AH:(%<\^]j

are not interesting either because they disable the timer (which we need in order to

wake up), or because they are used when one wishes to keep the wakeup time low

which is not necessary for our purposes. For more information see the datasheet for

the ATMega128[8].

Idle mode is used when any of the integrated I/O interfaces are in use, e.g. when

the UART is communicating, or when the SPI or I2C interface is in use. It only

stops the clocks that drive the CPU and the program memory (i.e. the flash).

ADC Noise Reduction is used when the node is performing an analog to digital

conversion, to reduce the noise from other parts of the MCU. Like the idle

mode, it stops the clocks that drive the CPU and the flash, but this mode also

stops the clock driving the I/O interfaces.

Power-save mode is used when the MCU should wait on the external timer. In

this mode, the only functioning parts of the MCU is Timer0 and the external

interrupts. Timer0 is the timer that is driven by the external oscillator, and

the one used for the central timing component — called =*:�U*D4KBP — in TinyOS.

This mode should be entered when the MCU has no work left to do, and when

it does not need to communicate with external devices. This mode stops all

clocks, except the one driven by the external oscillator.

In the following sections we will describe how we have implemented the power

management, and how it is implemented for the other ATmega128 based ports, as

our approach is different than the one used by the other ports.

5.2.1 Implementing Power Management

The choice of sleep-mode depends on the currently active I/O interfaces on the

MCU. Therefore we choose an approach that resembles having a counting sema-

phore for each available state.

When a component turns on an I/O interface, and needs to make sure that the

node enters the idle mode, it calls the =�q(N4r+XMs(tB=(s(c+X�m!EBG(s+X0I+qME(s macro. This macro

increments a counter, which remains non-zero for as long as one of the components

in the system needs idle mode. When the component no longer requires idle mode

=�q(NMr�X4G4s(@Bu(s+X�m!EBG4s�X0I+qME(s is called. A similar counter is implemented for the ADC

Noise Reduction mode.

When TinyOS puts the node to sleep, it determines the best sleep-mode based

on the values of the two counters, and puts the node to sleep in this mode. Inter-

rupts needs to be enabled when the sleep-mode is entered, otherwise the node will

never wake up from sleep.

The selection of the correct sleep-mode, requires several instructions, and ends

up setting the I<PMv�P(c register of the node. To make sure that the correct sleep-mode
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is selected this needs to be done with interrupts disabled. Once this register is set,

the interrupts are enabled again, and the %48(D(DML instruction is executed. However

this leaves a small window where an interrupt could change the sleep-mode needed

by the application, making the node enter the wrong sleep-mode, which in the worst

case could cause the node to lock up.

The I<PMv�P4c register has a bit which controls if the %484DBDML instruction of the MCU

will be executed or not. We can use this bit prevent the race. When one of the

=�q(NMr�X4G4s(@Bu(s or =�q4N4r�X0sBt(=(sBc macros are executed, we disable the execution of the

%48(D(DML instruction. This means that if one of these macros are executed in the small

window between selecting the correct sleep-mode, and issuing the %48(DBD0L instruc-

tion, the %484DBDML instruction will not be executed. The TinyOS scheduler will then

end up calling the %48(DBDML function again, and then the correct sleep-mode will be

entered.

5.2.2 Power Management on the Mica Motes

The power management implementation used on the Mica motes does not use

counting semaphores. Instead the power management adjustment is done in a com-

ponent called rBlBG(l+?M>+DMK(I+$0'+$4Y<D!UHDM'BJ . This component provides a command called

$(O<w0W*%�J(l<?M>+DMK , which uses the MCU registers to determine which interfaces are cur-

rently active. From this it determines the correct sleep-mode and sets it.

The race in our solution is also avoided by the Mica implementation. When

$(O<w0W*%�J(l<?M>+DMK is called it posts a task to perform the actual power management

adjustment. If an interrupt fires while this adjustment is in progress, which also

calls $(O<wMWH%�J(l<?M>+DMK , TinyOS will not put the node to sleep, but instead execute the

new $(O<wMW*%CJBl<?0>+D4K task after the current adjustment, and thus select the correct

sleep-mode.

This method would also work for us. However, the port of TinyOS to the BTn-

ode did not include the rBl<G(l<?M>+DMKBI<$0'�$MY<DCUHD0'BJ component, and we did not become

aware of its existence until after the experiment was finished.

5.3 TinyBT

TinyBT[36] is an implementation of a very simple Bluetooth-like stack.2 The Blue-

tooth interface is separated into several layers.3 The lowest layer which we can

access from the node is the HCI (Host Controller Interface). As can be seen from

Figure 5.3, the HCI layer provides an interface to the protocols ACL (Asynchronous

Connection-Less link) and SCO (Synchronous Connection-Oriented link). The ACL

protocol is a point-to-multipoint link, and even though it is called connection-less,

a node still has to initiate a connection to another node to send data. The SCO

protocol is a point-to-point link, well suited for voice transfer.

ACL is the underlying protocol used by the L2CAP protocol (which is imple-

mented purely in software), which provides multiplexing of data connections, while

the SCO protocol is used to provide streaming support for voice data. The L2CAP

protocol is normally the lowest layer exposed by the OS. However TinyBT only

2As TinyBT does not implement the full Bluetooth stack, and as it is not recognized by the Bluetooth

SIG, it cannot claim to support Bluetooth. We will however refer to it as Bluetooth for the sake of

simplicity.
3We will not describe the Bluetooth protocol in detail, but instead refer the reader to books on the

subject[13, 43], and the Bluetooth specification[11].

44/120



5.3: TinyBT Low Level Software

Figure 5.3 – Part of

the Bluetooth proto-

col stack

Figure 5.4 – Components

of the TinyBT stack

provides access to the ACL layer.

Working at the ACL level represents a challenge when communicating with

a PC. As already mentioned, the lowest point of entry for a standard compliant

Bluetooth stack is through another protocol on top of the ACL protocol. Therefore

many of the Bluetooth libraries does not support interfacing directly with the ACL

protocol. The Bluez stack (which is the default Bluetooth stack in Linux), can be

made to work reliably with ACL communications provided that one disables the

software implemented ACL-based protocols in the operating system.

5.3.1 Problems in the original TinyBT Stack

At the beginning of this project the TinyBT stack was not very well tested. It was

written as a proof-of-concept and it had only been used to communicate between

two BTnodes, for short periods of time. No support for node to PC communication

was provided. This is however a requirement for this project.

In the TinyBT stack it is possible to choose the baud-rate used between the

Bluetooth module and the MCU. At the start of the project, this was set to 57.6 kbps,

resulting in a low bandwidth, but the TinyBT code worked reliably. When the com-

munication speed was raised to 460.8 kbps, which is the highest data-rate supported

by the Bluetooth module, problems started showing. The Bluetooth stack started to

report errors about receiving unknown commands etc. When such an error was

encountered, the stack usually ended up in an unusable state.

To explain the cause of problem, we need to take a look at how the components

that make up the TinyBT stack are connected to each other. As can be seen from

Figure 5.4, the component that communicates with the Bluetooth module is called

rBl<GM7<=4v<@(cB=<x4P . This component can communicate with the Bluetooth module (actu-

ally the UART) one byte at a time. Once it receives a byte, it signals the Y<D4J event.

This event is received by the r<PHmCl+$+)C;+DMJ<x4P component, which splits the data-stream

from the UART into individual HCI packets. When it detects that an entire packet

have been received, this packet is delivered to the r<PHmCP<?4K<D(x(P component, through

one of the Y+?4JBs(`+D0'BJ or Y+?4JB@H)M8ME<$MJ<$ signals.

The TinyBT code did not work very well when the communication speed was

raised, because a single byte buffer was used internally in the r<PHmCl<$�)C;<D4J<x4P com-

ponent. When a byte was received from the UART, the it was stored in a buffer,
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and the O<$4J<$<XMK<D($(O4&+X0J+$+%C; was scheduled to run. This task copied the byte to the

receive buffer, and checked if a whole packet was ready. However if another byte

was received, before the O<$4J+$BXMK<D($(O4&+XMJ<$+%C; had been run, the previously received

byte would be overwritten.

We fixed this problem by storing the data directly in the packet receive buffer,

instead of storing it in a intermediate buffer. This required that we check if an entire

packet have been received while still in interrupt context, but this check is simple

enough to be feasible.

Solving this problem, gave rise to a new problem. Instead of silently overwrit-

ing bytes, entire packets were being dropped instead. This was bad, as some of

the packets received from the Bluetooth module are event packets, i.e. information

packets concerning state changes and other information, which is needed to cor-

rectly interface with the module. If such a packet is lost, the stack can end up in a

non-working state, which causes the application to fail.

The packets were dropped because of another queue that only holds one item.

When rBPHm�P<?MK+D(x4P delivers a packet to the application, it does so through an event

which is not in interrupt context, but in task context. The event is delivered in

task context because it is easier for the application programmer to handle such

events, as they are serialized by the system, eliminating many race conditions. To

exit interrupt context r<PHm�P<?MK+D(x4P has to post a task, which then delivers the received

packet to the application. When the application handles the event, it must return

a free packet, which r<PHm�PB?4K<D(x(P and rBPHmCl+$+)�;<DMJ+x4P can receive the next packet in.

But while the application handles this packet, the r<PHm�P<?MK<DBx4P and r<PHm!l+$�)C;<D4J<x4P
components have no place to store any new packet that is being received. This

means that they will have to drop data until the application exits the event handler.

The solution to this problem is to implement a buffer-manager[40] which the

lower layers can ask for new buffers when they need them.

With these two changes the Bluetooth module works consistently, even when

the transfer rate is 460.8 kbps.

5.3.2 Duty Cycling the Bluetooth Module

Another problem with the TinyBT stack, was that it did not allow the application to

turn off the Bluetooth module, once it had been powered on. This was a major prob-

lem, as the power consumption of the Bluetooth module when idle is 30 mW[38].

Therefore we need to be able to turn off the Bluetooth module, when we are not

using it to offload data.

To turn off the Bluetooth module, we need to be able to reset the stack so

that it can initialize the Bluetooth module more than once. Because the version of

TinyBT we started with used a buffer-swapping technique, it allocated 3 – 4 internal

buffers. These buffers could be returned to the application, and end up as a part of

the applications buffer pool. Therefore it was not possible to just reinitialize the

pointers to these buffers, when the stack needed to be reinitialized.

Again the solution is a buffer-manager. The buffer-manager allows us to re-

move all the internally allocated buffers, thus making the re-initialization problem

the trivial job of evicting all buffers from the stack.
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5.4 Storing Sensor Data

To duty cycle the Bluetooth module, we have to store the data we sample from the

accelerometers somewhere, while the Bluetooth module is turned off. The most ob-

vious choice is to store it in the data memory of the node. However as described in

Section 4.2, we disabled the external memory to conserve energy, leaving us with

4 KiB. Since the Bluetooth specification requires that the buffers used for communi-

cating with the Bluetooth module are larger than 255 bytes[11, Part H:1], we will

at least have to allocate 512 bytes of memory for these buffers: one for receiving

and one for sending. This leaves us with 3.5 KiB, some of which is used by the

application variables, and some is used for maintaining the state of the Bluetooth

stack. So at best we will have 3 KiB available to store sensor data in.

As we decided sample at 4 Hz (see Section 3.2), and each sample from the

2-axis accelerometer is 10 bits wide and each sample from the 3-axis accelerometer

is 12 bits wide, we are going to use 30 bytes each second, if we simply store the

data as tight as possible. This will allow us to store about 100 seconds of sensor

data in memory. This will not allow us to duty cycle the Bluetooth module enough

to expect that the node will last for 20 days. Therefore we have to consider other

options.

With the BTnode we have two options:

• We can use the unused parts of the program memory on the ATMega128.

• We can attach external flash to the BTnode, as is done on the Mica motes[29].

If we choose to use external flash, we are free to choose the size of the flash, and

since we already are developing a sensor board, we could simply attach the flash to

the same sensor board. However if the program memory of the ATMega128 could

be used, this would be preferable from a cost and simplicity point of view.

The ATMega128 MCU has 128 KiB of flash for the program memory. Of these

the top 8 KiB are reserved for code that writes to the program memory. Also some

of the program memory is going to be used for the application. So if we assume

that there is 100 KiB program memory available for us to store sensor data in, we

actually have room for just above 55 minutes of sensor data. This will hopefully

be enough to keep us within the energy budget, but we will explore this further in

Section 7.3.

There are several interesting problems related to using the program memory

on the ATMega128 as storage. First of all we need to know how to make the MCU

overwrite its program memory. Secondly we need to ensure that we do not over-

write the application itself. Thirdly we need to design an interface that allows us to

access the flash from within TinyOS. In the following sections we will discuss these

problems.

5.4.1 Accessing the Flash

The AVR architecture used in the ATMega128, is a so-called Harvard architecture,

which means that the program and data memory are separated[27]. This means

that in order to access the program memory from within a program, special instruc-

tions will have to be used. For the ATMega family the instructions are called G4lBI
(Load Program Memory), s<G(lBI (Extended Load Program Memory) and N4lBI (Store

Program Memory). The N4lBI instruction only has an effect when issued from the
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highest 8 KiB of the memory, while the G(lBI and s<G(lBI instructions can be issued

from any point in the program memory.

The N4l(I instruction can only be issued from the No Read While Write memory

segment4 (also called NRWW). The rest of the memory is called Read While Write

or RWW. If a page is written in the NRWW part of the flash, the MCU stops all

processing until the page have been written. This is not the case if the page is

written in the RWW part. While such a write is in progress only program memory

in the NRWW part of the memory can be accessed.

Reading from flash is simple. One can read both bytes and words anywhere in

memory using one of the G4lBI or s<G(lBI instructions. Writing to flash is more compli-

cated. It is performed page-wise, with pages of 256 bytes. Writing a page is a 3 step

process:

1. The temporary page buffer is filled. This is a 256 bytes write-only area of

the chip. Filling this buffer is done two bytes at a time, by calling the N4lBI
instruction.

2. The page to be written is erased. This is once again done by issuing the N4lBI
instruction. Once the page is erased, all the bits in it are set.

3. The data stored in the temporary page buffer is transferred to flash using the

N4lBI instruction. In effect what happens is a bitwise @BtBE operation between the

values in temporary page buffer, and the values in the flash.

Step one and two are interchangeable. The flash is guaranteed to have a data re-

tention time of 20 years[7]. Once more than 10,000 erase/write cycles have been

performed on a single page, this retention time is no longer guaranteed. Writing or

erasing a page in flash takes between 3.7 ms and 4.5 ms[8].

In the standard library for the AVR platform, several functions are defined,

which makes access to the program memory easy from C[9]. The interesting func-

tions for our purpose are:

L<Y0U*XMK+D($4O+X�>+?4KBO<XMQ<$MK - Reads a word from an address in the program memory. The

word can be read from the entire 128 KiB of the memory. A similar function

called L<Y�UfXMK+D($4O<X0>+?MK<O<X�'+DB$MK is available, but this function is only capable of

reading from the first 64 KiB of memory.
y ?B?MJ�X0L+$MY+DBX4D4K<$+%0D - Erases a page in the program memory, setting all bits in the

page back to 1.
y ?B?MJ�X0L+$MY+DBXMQH:08(8 - Writes a word to the temporary page buffer.
y ?B?MJ�X0L+$MY+DBX�><KH:!J<D - Writes the contents of the temporary page buffer to a page in

the flash.
y ?B?MJ�XMK4>(>9X y W*%C& - Checks if the Read While Write memory is busy. Whenever the

functions
y ?B?4J�X�L+$4Y<DBX4D4K<$+%MD or

y ?B?MJ�X0L+$MY+DBX�>BK*:!J<D are executed, the RWW sec-

tion of the memory is set to busy, meaning that it cannot be accessed.
y ?B?MJ�XMK4>(>9X4D0'�$ y 84D - Tries to enable the Read While Write memory again. This must

be done once the flash operation is finished. Otherwise the MCU will not allow

access to the RWW memory.

4Actually the SPM instruction can only be issued from the Boot Loader Area, the size of which can be

selected by setting fuses on the MCU. However the Boot Loader Area can at most be the entire NRWW

memory, or 8 KiB.
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WRITING TO FLASH (5.1)
z+{

Input: The address to write to (addr)|*{
Input: A 265 byte array containing the new contents of the flash (data)}f{
WRITETOFLASH()~^{

cli();� {
for (int i = 0 ; i < 128 ; i++) {�f{

boot_page_fill(i, data[i * 2]);�f{
}

�f{
boot_page_erase(addr);�f{
while (boot_rww_busy()) {z	�f{

boot_rww_enable();zCz+{
}z�|*{
boot_page_write(addr);z	}f{
while (boot_rww_busy()) {z�~^{

boot_rww_enable();z � {
}z	�f{
sei();

The pseudo code describing how to write to the flash, can be seen in Algorithm 5.1.

This code shows two problems with the process:

Interrupts are disabled throughout the process. As it takes at least 3.7 ms to

erase a page in flash, or to write to it, the above pseudo code will disable

interrupts for a total of at least 7.4 ms. This is bad, especially when the Blue-

tooth module is active, as we can miss interrupts from the UART.

The code busy waits for the page to be written or erased. The busy wait results

in the MCU using more energy than necessary. If we could enter a sleep-mode,

while the flash is being written, we would be able to reduce the energy con-

sumption.

Disabled Interrupts

Interrupts are disabled during the flash operations, as the NMlBIBsBt bit in the N4lBI<P<NMc
register needs to be set for the NMlBI instruction to be executed[8]. This bit is au-

tomatically reset after 4 clock cycles. If interrupts are not disabled, an interrupt

could fire between the instruction setting the bit, and the N4lBI instruction, resulting

in the N4lBI instruction not being executed. The N4lBIBs(t bit needs to be set, no matter

which action the N4lBI instruction needs to perform. So we absolutely need to disable

interrupts while the N4lBI instruction is executed.

The interrupts could still be enabled during the busy wait stages. But as all

the interrupt handlers are placed in the RWW part of memory — which is disabled

during the write to flash — we would not gain anything from this.

This could be solved by moving the interrupt handlers to the NRWW section,

together with the flash writing code. However this would also require that we move

all the code that is called by the interrupt handlers, into the NRWW section. This

is impractical, as it requires changes to all components used by our application.

Furthermore we cannot be certain that all the required code can fit into the 8 KiB

available for the NRWW section.
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Busy Waiting

To get rid of the busy wait, the MCU supports raising an interrupt whenever the N4lBI
instruction completes. So we might be able to disable all other interrupts, and enter

a sleep-mode until the write or erase is finished.

However all of the supported sleep-modes for the ATMega128, even the Idle

mode disables the clock that drives the flash[8]. So if the MCU enters sleep-mode,

it will not wake up when the write or erase is finished, but first when an interrupt

from an external device fires. Therefore we decided against removing the busy wait.

5.4.2 Placing Code in the Boot Loader Area

Writing to the flash requires, as previously discussed, that the code issuing the N4lBI
instruction resides in the boot loader area. The boot loader area is at least 2 KiB

large, so if the code is placed at the 126th KiB in the flash, it can use the N4lBI
instruction no matter how the fuses on the MCU are programmed.

We are not going to be able to store the entire application in the boot loader

area, so we need some way to inform the TinyOS tool-chain that certain functions

needs to be placed at specific locations in the memory.

The GNU GCC5, can place a function in a different section of the object file.

If XBX($4JBJ(KH: y WBJ+DBX(X[Z(Z�%0D�)CJH:0?0'dZC�^� y ?B?MJ+8(?($4OBD4Kf�M\B\(\ is added after the function decla-

ration, the function is placed in the � y ?B?4J+84?B$4OBD4K section. The GNU Binutils linker

can then place the function from the � y ?(?4J�84?($(OBDMK section at the memory address

x4A^e��<P<x(x if the parameter �B�(%MD�)CJH:0?0'*�(%CJ<$4K(JB��� y ?(?4J+84?B$4OBDMK<�BxMA^e��BPBxBx is given on the

command line. The address x4A^e��<PBx(x is the beginning of the last 2 KiB of program

memory.

The nesC pre-compiler complicates this, as it inlines all functions. Therefore

chances are that the � y ?B?MJ�84?($(OBDMK annotated code will be inlined inside another

function which is not located in the � y ?B?MJ�84?($(OBDMK section. However if the string

XBX($MJBJBKH: y WBJ<D<X(XoZ(Z/'+?�:!'�8+:�'�D�\(\ is added to the function declaration, GCC will not

inline that function. nesC does not recognize the '�?�:!'98�:�'+D attribute, so in the code

it delivers to GCC, all functions still receives the :�'98�:!'+D keyword. This causes GCC

to inline the function, while warning that the function both is specified to be inlined

and not to be inlined. We created a patch to address this problem.6 The patch makes

nesC respect the '�?9:�'98�:�'+D attribute, by not asking for such functions to be inlined.

This patch have been integrated into nesC 1.1.2 and higher.

5.4.3 Finding Unused Flash Pages

When storing the sensor data in the flash, it is very important not to overwrite the

program code. Therefore we need a way to find the pages which is not used by the

program.

Finding the upper bound is simple, as we define it ourselves. The last usable

page is simply the one just before the page where the � y ?B?4J+8(?($4OBD4K section starts.

Finding the first unused page is a bit more problematic. A simple solution

would be to hard code the value. The problem with this solution is that it is very

error prone, and the errors might not be easy to discover: If we overwrite program

5GNU GCC is the compiler used by TinyOS for the BTnode.
6Available at

���	�������	��1��+�
,��������C.C �2�.	���/�0 #"�����������-��f�3�	�������	������.����! #�	�����	���	�	�����	������-����� /�	�����	�	���
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code, and the application actually calls this code, we will discover it. But initial val-

ues for global variables etc., are also stored in the program memory, and copied to

RAM during the initialization of the node. Overwriting a page containing this data

will be harder to discover, as the error only shows itself when the node is rebooted.

Therefore the ideal solution would be a way to determine the first usable flash page

from within the application.

The linker helps us to determine the first unused page. It inserts a symbol into

the finished program code, which marks the end of the program and initial values.

This symbol is called XBX4O<$4J<$BXB84?($(O<X4DM'<O . Normally symbols are used to mark the

location of a function or a shared variable, so to access this symbol from C, we need

to declare a variable, like so:

D4ABJ<D4K('�)M?M'*%CJaL<K<?4Y�X�:�'BJ<kB�BX0J�X(X4O<$4J<$<X(84?($(O<X4DM'<O�]
This declaration tells the compiler, that a symbol called XBX4O<$MJ+$BXB84?($4O+X4D0'+O is

defined somewhere else, and we know it is a constant 32-bit integer stored in pro-

gram memory. The value or type of this variable does not matter. To figure out

where the program code ends, we simply look at the address of XBXMO<$4J+$BX(84?B$4O<X(D0'<O ,
which will point to the end of the program code. Using this address it is simple to

find the first usable page.

5.4.4 A TinyOS Component for Accessing the Flash

Components to access flash already exists in TinyOS. If we could use the interface

l+$4Y<D4sBs(l(c�q0I , which is the same interface used to access the external flash on the

Mica motes, it would be easier to make things such as Matchbox[24] (a simple

flash file system) use the internal flash.

However the l+$4Y<D4sBs(l(c�q0I interface is modeled very closely to the fact that the

flash is external. The interface requires that the implementation keeps a cache of

the last accessed page in memory, which allows an application to write to the same

page in several calls, without writing to the flash in between.

Since the l<$4Y+D4s(sBl(c+qMI interface needs to use 256 bytes of RAM to hold a page

of the flash, and since the it would require a lot of work to support it, we decided

against using it, opting instead to construct our own interface. This interface is

flexible enough that it should be possible to create a new component to emulate

the original l+$4Y+D4s(s(lBc+q0I interface, if a need for this arises later on.

The interface for the ��8($�%CnB@H)()0D+%B%CI module can be seen in Figure 5.5. The two

commands QH:!KH%�J4v*%0$ y 84DMl+$MY<D and 8($�%CJ4vf%0$ y 84DMl<$4Y<D can be used to retrieve the first

and last page that can be overwritten without overwriting parts of the program.

The K<DB$(O and K+DB$(O+X<%0?CUHD functions read from a specific page. There are functions

for this in the Standard Library for the AVR platform but, it is advantageous to be

able to perform these functions with the same addressing as the D4K+$�%MD and ><K*:CJ+D
functions. The D4K+$�%MD and ><KH:CJ+D functions respectively erases and writes a page to

flash. Both of these functions disable interrupts for periods of time up to 4.5 ms.

5.5 Summary

In this chapter we have created or adjusted the low level software to the needs of

our application:

• We have designed interfaces for the accelerometers, and implemented these.
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Figure 5.5 – The �d���4�(�0 ^¡(¡(¢0�(� interface

:!'<J<D4K<QB$+)MDR��8($+%Cn<@9)()MD+%(%RS
$+%�&('*)a)M?CUBU*$0'<OVW*:!'<J^e!g<X0JTQH:CKH%�JMv*%M$ y 84D4l<$MY+D[Z�\i]
$+%�&('*)a)M?CUBU*$0'<OVW*:!'<J^e!g<X0J£8($�%�J4v*%0$ y 84DMl+$MY<D¤Z�\^]

$+%�&('*)a)M?CUBU*$0'<OaK<D�%CW980J�X0JaK+DB$(O�Z#W*:!'BJfe!g<X0JVL�$4Y+D<X�'+?�h¥`+?9:CO§¦CL�$4Y+D�\i]
$+%�&('*)a)M?CUBU*$0'<OaK<D�%CW980J�X0JaK+DB$(O+X<%0?CUHD[Z#Wf:�'BJ^e!gBXMJVL�$4Y<D<X0'+?¤h

Wf:!'<J<¨<X0J�%CJ+$4KBJdh
Wf:!'<J<¨<X0J�)0?MWB'<Jdh©`<?9:�O§¦0O<$4J<$9\^]

$+%�&('*)a)M?CUBU*$0'<OaK<D�%CW980J�X0JbD4K+$�%MD[Z#Wf:�'BJfeCgBX0JaL+$4Y+D<X�'�?�\^]
$+%�&('*)a)M?CUBU*$0'<OaK<D�%CW980J�X0JV><K*:CJ+D[Z#Wf:�'BJfeCgBX0JaL+$4Y+D<X�'�?¤h¥`+?9:�O§¦CL+$4Y+D9\^]j

• We have devised new a power management interface for TinyOS, which will

help us in reaching the goal of deploying the node for 20 days.

• We have made changes to the TinyBT stack, to make it ready for production

use, including stability fixes and code clean up.

• And we have presented a novel approach to data storage, using the built in

flash on the ATMega128. This allows us to duty cycle the Bluetooth module,

without adding external flash to the node.

With these pieces in place, we can proceed to defining how the data gathering

application should work. This will be the subject of the next chapter.

5.5.1 Further Work on TinyBT

The state of TinyBT after the changes described in Section 5.3 is quite good. How-

ever there are still many points where it could be improved.

It is possible to use the stack in a production environment now, provided one

adds some timeouts to the application code which, if reached, restarts the TinyBT

stack. This can happen if we receive bogus data from the Bluetooth module, or if we

drop a byte or packet. This can happen, if interrupts are disabled for long periods

of time.

The solution for this problem is to add error handling as per the Bluetooth

specification[11, Part H:4]. This states that the node should send a r<PHmMXMc<D+%MDMJ com-

mand to the Bluetooth module, whenever it encounters an invalid HCI packet indi-

cator (which is the first byte of a packet), or if the length field is out of range. This

will catch most problems, and get the node and Bluetooth module communicating

correctly again. However a timeout for how long the node can spend receiving a

packet also seems in order. Otherwise, if the node misses a single byte in a packet,

it has to wait for the next packet to arrive, before it detects the error. In our de-

ployment this error-recovery was implemented in the application, and was timeout

based (see Section 6.5.1 for details). Whenever one of the timeouts triggered, the

application simply power-cycled the Bluetooth module.

To make the stack more flexible, it would also be a good idea to move all the

node/Bluetooth module specific code into its own component. This would make it

easy to port the stack to other Bluetooth modules or nodes, as one would only have
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to replace this one component. This is very relevant, as a BTnode revision 3 exists,

which have switched to a Zeevo Bluetooth module. Currently no port of the TinyBT

stack have been made to this module, but that is an interesting task.

A more cosmetic issue with the current TinyBT implementation, is that it is

implemented as one interface. This means that every application has to imple-

ment 10 – 15 signal handlers, even though the application might not use all that

functionality. For example, an application that never scans for other Bluetooth de-

vices, needs to implement the events :�'+ª4Wf:!KB&BPB$0'*)0DB84PB?!U+L984DMJ+D , :!'+ªMWf:CK(&(c+D+%!W980J and

:!'+ªMWf:CK(&BP<?!U+L984DMJ<D . If all the inquiry commands and events was put into one inter-

face, the application could simply choose not to use that interface, causing the de-

fault implementations of the events to be used instead. This would also make the

application source code much easier to read.

One last thing that is worth considering is that Intel have released a node,

called the Intel Mote[44]. This node features a Zeevo Bluetooth radio, and Intel

have provided a Bluetooth stack for this in the TinyOS tree. Furthermore they have

implemented a automatic network assembly protocol, for these nodes. It might be

useful to merge this stack with the TinyBT stack, especially if they have imple-

mented the L2CAP protocol.
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Chapter 6

The Application

With the accelerometers selected, the sensor board manufactured, and the low level

software in place, we are ready to design the main application for the experiment.

For this we are going to need the following:

• A way to time-stamp the data gathered by the node, so we can find the time

when a specific sample was obtained.

• An on-flash storage layout, that optimizes the amount of data we can store in

the flash.

• A protocol that will allow us to efficiently offload data to a PC.

• A way to debug the nodes in the field.

Apart from these 4 problems, we will look at several ways to ensure the reliabil-

ity of the application during the experiment. We will also look at the memory re-

quirements of the final application, both with regard to program memory and data

memory.

6.1 Time Synchronization

To correlate the data gathered on the node with the data from the video cameras,

we need to have some way of time-stamping the data.

We know that the time between two consecutive samples will be the same

through out the experiment for each node, even though we do not know how long

this period will be. This is because the different nodes have different clock drifts.

Therefore we introduce a sample counter. When the timer used to obtain samples

fires, this counter is incremented by one. The value of this sample counter is then

written in the four first bytes (32 bits) of each page we store in the node’s flash

memory. This will provide us with redundancy, making it possible to find the sample

number of a specific sample even if some pages are missing.

Whenever we offload data to one of the PC’s, we include the current value of

this sample counter in the initial packet (which also contains a dataset identifier and

the number of available pages, more on that in Section 6.3.5). When the PC receives

this packet it immediately assigns a time-stamp to it, and stores this information.

To figure out when a specific sample was obtained, we can look at the pairs

of time-stamps and sample counter values, and calculate the average time between

two samples. We can then use this average to calculate the time a specific sample

was obtained.
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Since this method does not take the time it takes to transmit a packet into

account, there will be a small difference between the real time, and the time at

which a sample is obtained. But this difference is going to be much smaller than the

time between two samples. So this will provide accurate enough time-stamping for

our purpose.

6.2 Flash Page Layout

As described in the previous section, we store a 4 byte sample number at the be-

ginning of each page of data we store on the node. In this section we will discuss

how we store the accelerometer measurements in the remaining 252 bytes. For this

experiment, we want the application to be as deterministic as possible, which is

why we will not use compression to store the samples. Instead compression will be

explored thoroughly after the field experiment, in Chapter 10.

We cannot be certain of the order in which we receive the measurements from

the analog and digital accelerometer. Also in a few cases, a measurement is never

returned by one of the accelerometer components.1 A way to solve this is to lead

a sensor reading with a number that identifies if it is an analog or digital reading.

After the identifier, the actual sensor reading is written.

The initial straight forward way to store the data, is to use a byte for each

identifier, and 2 bytes for each axis. This means that we would have to store 12

bytes 4 times each second, and that a page is filled in 5.25 s. There are 512 pages

available on the node in total, but some of these are used by the application. A

conservative estimate is that we will have 400 pages available for data storage, and

therefore will fill the memory in 35 minutes.

Some simple observations can save us a lot of space: If we start with the iden-

tifier, we only need two bits to represent it. One is not enough, because we need

to support three states. One for each of the accelerometers, and one we can use to

mark the end of data in a page, when there is no more room for measurements. For

the digital accelerometer we need 12 bits per axis, and for the analog 10 bits per

axis. This means that we will only have to write 60 bits (or 7.5 bytes) 4 times each

second, filling a page in 8.25 seconds, and all the available pages in 55 minutes.

To ensure that we do not destroy the flash, we will store the measurements in a

cyclic buffer. This will ensure proper wear-leveling of the flash, and make sure that

no page is written to more often than others.

6.3 Offloading Data

Offloading data from the node should be done as fast as possible, as the radio is

extremely energy consuming. We also need make the offloading algorithm as error

resistant as possible, so data cannot be corrupted during the offload. The last goal

is that the algorithm should be simple, to make it easier to implement. This in turn

should lower the risk of programming errors, which is especially important on the

node, as errors there will be hard to correct, once the experiment is running.

We will not concern ourselves with multi-hop routing, as this will complicate

the offloading mechanisms. Furthermore there is plenty of power available in the

1We have not explored this in depth, as we did not have a JTAG interface to assist debugging the

problem. However it is most likely caused by a timing issue.
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stables, so we should be able to have Bluetooth coverage everywhere.

In the following we will discuss solutions to the different problems in discover-

ing nodes and offloading data, while keeping the above in mind.

6.3.1 Memory Considerations

As described in Section 4.2.1, we decided to disable the external memory. This

leaves us with only 4 KiB, for the stack, application variables, a buffer to store the

sensor data in, and buffers for the Bluetooth communication.

We will need a buffer to store the sensor data in, so that we only need to write

each page of flash once, to fill it. This buffer needs to be at least 256 bytes large. The

alternative is to write several times to the same page, taking advantage of the fact

that a write to flash, in effect is a bitwise @Bt(E operation[62]. However this solution

will result in a higher energy consumption, in part due to the approximately 4 ms

busy wait needed for each write (see Section 5.4.1 for details).

The buffers for the Bluetooth communication will have to be at least 256 bytes

large, to satisfy the requirements in the Bluetooth specification[11, Part H:1]. How-

ever to be able send an entire page in one packet, we will for the sake of this

argument say that a packet should be 300 bytes long.

We have performed tests with the TinyBT stack that have shown that we will

need at least 3 free buffers when sending at full speed, to not miss control packets

from the Bluetooth module. This means that we at least will have to use 4 buffers,

as we will also need one for the data to send. Having only one send buffer, will

impose a limit on the transfer rate, so 6 buffers in total would be more ideal.

We will need 1456 bytes of memory for 4 Bluetooth buffers, and the flash

buffer, i.e. more than one third of the available memory. In an ideal situation where

we have 6 packets available for Bluetooth communication we are going to use

2056 bytes, or just over half of the available memory. If we are going to use 6

buffers for the Bluetooth communication, the rest of the application should not use

more than 1.5 KiB, because we also need some memory for the stack.

6.3.2 Initiating Bluetooth Communication

Bluetooth communication is initiated with a device discovery, followed by the es-

tablishment of a connection.

Device discovery is done by sending “inquiry” packets. The devices that wishes

to be discovered needs to be in a complementary “inquiry-scan” mode, in which the

Bluetooth module listens after and responds to inquiry packets.

During discovery, the devices are not synchronized, so the device doing the

inquiry will need to send enough packets that a device in inquiry-scan will be dis-

covered. Measurements using a older version of the BTnode, but with the same

Bluetooth module, shows that performing the inquiry costs twice as much power as

listening in inquiry-scan mode[32]. An inquiry must last for at least 10.24 s in or-

der to collect all responses from devices[11, Part B:10]. However 99% of the devices

can be expected to be discovered in approximately 5.5 s[32, 35].

So to conserve as much energy as possible on the node, the PC should do

the inquiry, and the nodes should only turn on the Bluetooth module, put it into

inquiry-scan mode and wait for a connection from a PC.

Once a PC have performed an inquiry, it should check if the result matches
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Table 6.1 – The different ACL Packet types, and their characteristics[11, Part B]. The

transfer speeds in this table are theoretical maximum values.

Packet Max size Max symmetric data rate

Type (bytes) (kbit/s) (KB/s)
Error correction

DM1 17 108.8 13.6 FEC & CRC

DH1 27 172.8 21.6 CRC

DM3 121 258.1 32.3 FEC & CRC

DH3 183 390.4 48.8 CRC

DM5 224 286.7 35.8 FEC & CRC

DH5 339 433.9 54.2 CRC

any of the nodes participating in the experiment. If so, the PC should create a con-

nection to the node. Once the connection have been created the two devices can

communicate with each other.

6.3.3 Choosing a Packet Type

Each connection has a packet type associated. The packet type affects how large

packets can be before they are fragmented (actually how many protocol time-slots

are used to send the packet), and it also controls the error correction algorithms

used for the packets. The fragmentation of packets is handled automatically by the

Bluetooth module. As a larger packet-size only to a certain extent means higher

bandwidth[38], we want to select the packet type that fits best with the amount of

data we want to send.

There are two types of error correction for ACL packets[11, Part B], FEC (For-

ward Error Correcting) and CRC (Cyclic Redundancy Check). The 2/3 rate FEC

check is capable of correcting all single errors, and detecting all double errors within

10 bits. It achieves this by coding each 10 bit block into 15 bits. The CRC check is a

16 bit CRC-CCITT, but instead of an initial value of 0xFFFF, the UAP (Upper Address

Part, bits 24 to 31 of the device address) is used as the lower 8 bits. For the packets

using both CRC and FEC checks, the FEC encoding is applied after the CRC have

been added.

Table 6.1 contains a list of the different types of ACL packets, and their charac-

teristics. As can be seen, all of the packets have error correcting capabilities, which

means that our evaluation will have to be based on the other characteristics.

When we offload data from the node, the natural chunk-size is 256 bytes, as

this is size of a page in the flash. The only packet type that will encompass a whole

flash page is the DH5 packet. This packet type has CRC, but not FEC. If we wish

to use a packet with FEC, the most obvious choice would be the DM5 packet. We

would then have to split a flash page into 2 packets, which would make the solution

more complex, as we would have to be able to re-request each part of the page. But

as DH5 is the packet with the highest data rate, this seems like the obvious choice.

We have performed a simple test using different package types, with different

packet sizes, and with different UART speeds. To make the test resemble the real

scenario, we only send data from the node to a PC, and we send it as quickly as

possible. The three different packet sizes we have tested are, the maximum size

that can be sent in a single packet, 135 bytes (the size of half a page, plus some
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Table 6.2 – TinyBT Transfer Speed

Transfer rate in kbps
Packet

UART @ 230.4 kbps UART @ 460.8 kbps
Type

Max size 135 B 270 B Max size 135 B 270 B

DM1 53.25 105.01 105.12 51.73 105.36 105.62

DH1 80.77 167.83 167.04 81.73 169.05 168.82

DM3 173.35 175.56 179.73 313.84 211.47 282.30

DH3 177.60 174.91 179.33 334.12 319.74 345.68

DM5 179.09 175.10 179.68 340.27 281.81 282.40

DH5 180.73 175.10 179.92 347.01 281.54 345.54

bookkeeping information) and 270 bytes (an entire page plus bookkeeping). The

two UART speeds we have tested are 460.8 kbps and 230.4 kbps. The results are

available in Table 6.2.

If we start by looking at the low UART speed, we see that the UART is quickly

becomes the bottleneck. Even when using DM3 packets, we are limited by the trans-

fer speed of the UART. If we look at the high UART speed, it is obvious that we

should use either DH3 or DH5 if we want to have the highest possible transfer rate.

We do not reach the transfer speeds from the specification, but this is most likely

caused by limiting factors on the node.

These results contradict previous findings, where the best bandwidth is mea-

sured with the DH3 packet type[38]. With that packet the throughput is measured

as 304.8 kbps, which is lower than our results. But their tests are also performed

with a packet size of 668 bytes, where our best case for that packet type use a packet

size of 270 bytes. Another cause of this difference can be the amount of noise in the

2.4 GHz band during the experiment.

We choose to use the DH5 packet, because this will be the easiest option when

developing the application and protocol. We do not expect a lot of noise in the

2.4 GHz band in the stables, so choosing this packet should also give us the best

transfer speed.

6.3.4 Bluetooth Communication Problems

During our tests with the BTnode and with an early implementation of the appli-

cation we noticed several problems with the Bluetooth communication. The initial

tests were done with an extremely simple protocol. The PC initiates the connection

to the node, and once the node receives the connection, it starts offloading all its

data, one page in each packet, and closes the connection once finished. Testing with

this protocol revealed the following problems:

• When offloading a node with full memory, the connection would sometimes

fail halfway through the offloading process.

• Once in a while a single packet would be missing in the data stream.

• The application would in rare cases receive many errors from the TinyBT stack,

indicating half received packets and the like. Usually the only way to get the

communication back on track was to power-cycle the Bluetooth module.
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The first two problems seems like problems with either the Bluetooth module or

with the TinyBT stack. However we have spent much time looking at the code to

see if there was any potential problems, and found none. So in the end we simply

chose to make a workaround for these problems.

The problem with many errors from the TinyBT stack is caused by writing to the

flash. As explained in Section 5.4.1, writing or erasing takes from 3.7 ms to 4.5 ms.

In this period all interrupts are disabled. But with the high UART communication

speed, we receive 15 bits in approximately 0.04 ms[40]. So when we write to flash

while receiving a packet from the Bluetooth module, we will miss data.

Lowering the UART communication speed to 230.4 kbps, makes these problems

occur much less frequently, because we are less likely to miss data, and this makes

the stack stable enough for production use. Therefore we decided to use this UART

speed for the deployment, even though the transfer-rate is significantly lower.

However the other two problems highlight the need for a more elaborate trans-

fer protocol, which we will present in the following section.

6.3.5 Transfer Protocol

Now that we have decided on how to discover nodes, and the packet type of the

connection, we need to decide on a protocol for transferring the data from the node

to the PC. We want to keep the protocol as simple as possible, and to push as much

of the bookkeeping to the PC side. The PC is much easier to debug than the node, so

having the complex part of the communication protocol on the PC side, will make

it easier to implement the protocol. Once the experiment is deployed it will also be

much easier to upgrade the software on the PC, than the software on the node.

We decided to implement the following protocol. Once the connection have

been established, the node sends the number of available pages to the PC, together

with a dataset identifier. From the dataset identifier the PC is able to tell if it already

has seen the dataset on the node, as the identifier should be unique for as long as

the program is running on the node. We choose to use the sample counter value

from the first flash page for the identifier, as it has the these properties. From the

dataset identifier and the number of available data pages, the PC creates a list of

all the pages that it does not have currently, and sends this to the node. For a new

dataset, it simply requests all pages from 0 to the number of available pages − 1.

The node then sends all the requested pages, each in their own packet, and when

it is done, it sends a packet to signal that no more packets will be sent. Now the PC

looks through its list of received pages, and checks if there is any missing. If there

is, a new list of pages is created. Otherwise a packet which acknowledges all the

pages received by the PC is sent. When the node receives this packet, it frees the

memory used by the pages that are being acknowledged, and updates the dataset

identifier. A detailed state diagram for the protocol can be seen in Figure 6.1.

There are obvious problems with this protocol. One of the major ones is that no

retransmission of control packets takes place. So if the PC misses the done packet,

or if the node misses an acknowledge or page request packet, the offloading process

deadlocks. To solve this, we introduce timeouts on the node, whenever it expects to

receive a packet from the PC. We do it on the node, because we need to make sure

that a failed communication will not leave the Bluetooth module turned on.

This very simple protocol, allows us to re-initiate an offload at the point where

a previous offload stalled. It also allows us to resend a single missed packet, without
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Figure 6.1 – State diagram for the protocol between the node and PC

(a) The protocol on the node (b) The protocol on the server
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much overhead.

6.3.6 Duty Cycling

In Section 6.2 we calculated that the node will use 8.25 s to fill a page, and that

it will fill the memory in approximately 55 minutes, depending on the size of the

application.

Our main goal is to make the node last the entire 20 days of the experiment.

Therefore we choose an aggressive duty cycling of the Bluetooth module, waiting

until only 15 pages of flash is left. This gives the node almost 80 seconds from it

turns on the Bluetooth module the first time, till the memory is filled entirely.

While very aggressive, we decided that this would be reasonable, as the PC’s

inquiry takes about 10 s, and the offload with a full memory takes 6 seconds. So

this means that the PC’s can scan for the node 6 times in a row before it discovers

the node, without the node loosing data, provided that no other errors occur. Also

a simple lab test with two PC’s and a single node checking in for a week did not

reveal any problems with this assumption.

6.4 In Field Debugging

As a way to help determine the cause of failure when the nodes are deployed, we

included some statistics about the health of the node in the initial packet. These

statistics include, amongst other things:

• The number of failure events received from the Bluetooth stack, since the last

received acknowledgement.

• The number of automatic reboots, since the last acknowledgement.

• The number of results received from the analog and digital accelerometers.

• A measurement of the battery charge indicator.

During the stability tests of the node, we introduced a simple debugging mecha-

nism. When the node is only sampling, all the LEDs on the node are turned off.

Once it turns on the Bluetooth module, the first LED on the node is turned on. Once

the Bluetooth module is in inquiry-scan mode, the second LED is turned on, and

when a PC is connected the third LED is turned on. This made it very easy to see

what the node was doing.

We did not want to do this in the experiment, as a single LED consumes about

20 mA. So to provide this debugging information in the stable, we created a re-

placement component for the G<D(O4E+D y WBY<P , used to control the LEDs on the BTnode.

The �+$4;<D(G<D4O4E+D y WBYBI component, controls some unused pins on the MCU, instead of

controlling the LEDs. The status of these pins can then be checked by using a volt-

meter. Even better, a simple LED array can be constructed, which can be attached

to the node when we want to know the state of the node. While the node still con-

sumes a small amount of energy to keep the pin high, it is much less than if a LED

was used.

To make it easier to determine if the node was functioning properly, we used

the LEDs during the first offload. Also, we ensured that the first offload would hap-

pen after 10 minutes, so that we could package the node and would not have to

wait an hour to find out if it worked properly.
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Another valuable debugging feature would be the ability to turn on the debug

UART. In normal usage, we have to turn it off, to conserve energy. But one could

construct the application so that it samples the value of a single pin, at the same

time it obtains a sample from the accelerometer. If 4 consecutive samples of the pin

indicates that the pin is low, it activates the UART.

We decided that this would be too much work, as it required many changes to

the N4J<O<q0W<JBP component, which we used to write debug information to the serial

port.

6.5 Reliability

In this section we will describe the measures we have taken to make sure that

the application works reliably when deployed. This includes making sure that the

node cannot end up with the radio turned on for a prolonged period, and guarding

ourselves against programming errors as much as possible.

6.5.1 Making the Protocol Robust

We implemented the simple protocol described in Section 6.3.5. However in the

event that no PC connects, we created a back-off algorithm, to ensure that the node

would not deplete its batteries completely.

When the Bluetooth module is turned on, the application waits for 30 s. If it

does not receive a connection within this time, an internal counter is incremented,

and the Bluetooth module is powered down for 10 seconds. Once this counter have

been incremented 3 times, the period where the Bluetooth module is turned off is

raised to 1 minute. After three more passes the turned off time is raised to 15 min-

utes, and after three more the Bluetooth module is turned on every 30 minutes. At

this point the turned off period is not raised any more. The connection timeout is

not the only time the counter is incremented. It is also incremented if a connection

is established, and the server does not send the page list within 2 seconds, or when

other timeouts that could point to a problem in the communication are triggered.

To return to the 10 seconds turned off period, the node must receive an acknowl-

edgement packet from the PC, indicating that all the pages have been offloaded

successfully.

This back-off algorithm is very aggressive, but this is a deliberate choice. We

want to preserve as much energy as possible, in the event that both PC’s or the

off-loading program on the PC’s fails.

In addition, we put a Cyclic Redundancy Check (CRC) on all packets. This is

somewhat superfluous, as the ACL packets already contain a CRC check. However

there is no CRC check on the UART communication between the MCU and the

Bluetooth module. And since the CRC was already implemented for use in the other

radio stacks in TinyOS, we decided that this was a small enough change that we

wanted this extra protection.

6.5.2 Automatic Reboot

As mentioned in Section 5.1.2, we initially had some problems where the node sim-

ply started misbehaving, when we used the I2C interface to the digital accelerome-

ter.
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This experience caused us to implement a controlled reboot of the node. If the

application received a lot of Bluetooth errors, or if it did not receive a connection

from a PC within a reasonable time period, even though the Bluetooth module

already had been power-cycled three times, the node initiates an automatic reboot.

This also happens when the application notices that it does not receive readings

from one of the accelerometers.

Before the node is rebooted, the state is written to flash. The first available

flash-page is reserved for this purpose. All the flash-memory management state is

written there, together with a mark, so that the application can detect if a reboot

was initiated by the application or by other means. Also if the flash is not filled up,

the temporary buffer we use to store the accelerometer readings in is also saved, as

is the pointers and counters, which tells the application where to write.

Once we have written all the state information to the flash, we trigger the

watchdog timer. The normal use of the watchdog timer is to perform a reboot if

the application have crashed. That is, the application has to “pet the dog” (execute

the «<EBc -instruction) at intervals to prevent the node from rebooting. Since we are

interested in rebooting the node, we simply enable the watchdog timer, and refrain

from “petting the dog”.

When the node is rebooted, the cause can be read from the I<PMv�P<NMc register. So

as a precaution we will only check for the mark in the first unused page of flash

memory, if the node was reset by the watchdog. As another precaution, we erase

the page that holds the state, as soon as we have read it in. This way we are certain

that if something goes wrong, the node will not continually reboot, as the second

reboot will be detected as a power-on, because the mark is erased.

Even though this code was originally written to deal with the I2C problems,

we decided to keep it for the deployment. Potentially it can save the node from

a corruption in the RAM. Once the node reboots all the memory is reinitialized,

eliminating any RAM corruption, and any values read from the flash are checked to

make sure that they are valid.

6.6 Size of the Final Application

For the TinyBT project a simple script was created which could calculate the code

size and memory requirements of each of the components in a TinyOS application.

This is not to be considered a precise measurement of the size of a specific com-

ponent, as many functions are inlined when the code is compiled, and thus may

feature in another components code size.

A list of component sizes for the final application can be seen in Table 6.3. The

interrupt routines are folded in to their respective components, and all the basic

code from TinyOS is aggregated into a TinyOS component.

By far the largest component in the table is the l+?M>�D4K(=+D+%CJ<D4K(I component,

which is the application that controls all the other components. The three compo-

nents r<PHm�PB?4K<DBxMI , r<PHmCl+$+)�;<DMJ<x4I and rBl<GM7<=4v<@(cB=<xMI together implement the TinyBT

stack. So the code size of the new and modified TinyBT stack is 2830 bytes, where

it before our improvements was 3178 bytes[36]. The difference is not enough to

decide if our version is lighter than the original version. Our code have been com-

piled with GCC version 3.4.3, while the original code have been compiled with an

earlier version of the compiler. So this difference might as well be attributed to the
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Table 6.3 – Code size and memory usage of the different components

Component Code size (bytes) Memory usage (bytes)

@BEBFBG(@H)()0D<80I 464 6

7<=Bl<$�)�;<DMJBr<$0'<O+84DMKBI 226 1836

P(c<P*eCg4I 562 0

�+$4;<D(G<D4O4E+D y WBYBI 50 0

��8($+%Cn<@9)()MD+%(%CI 348 5

r<PHmCP<?4K<D(x4I 568 10

r<PHm!l+$�)C;<D4J<xMI 1490 18

rBl<GM7<=4v<@(cB=<xMI 722 4

l+?M>+D4KB=<D+%�J<DMK(I 3330 360

N4=BI<k4E*:!YH:0NMlHm!I 486 11

=*:�UHD4KBI 2040 64

=*:!'B&�q(N 1328 20

Total 11614 2334

new compiler, as to the changes in the code. But the possible inlining of code into

other components can also cause such a difference.

If we look at the total code size, the entire application only uses 11.3 KiB. This

means that we have 458 flash pages left to store accelerometer measurements in,

which will give us 63 minutes before the application needs to offload data.

As to the memory usage, the two biggest consumers are — as expected — the

7<=Bl<$�)�;<DMJBr<$0'+O<84DMKBI (which declares all the buffers for the Bluetooth communica-

tion), and the application l+?0>�D4KB=<D+%�J<DMK(I . The 7B=Bl+$�)C;+DMJ(r+$0'<O+84DMK(I contains 6 buffers

for the communication, so we reached the ideal situation described in Section 6.3.1.

Furthermore we have only used 2334 bytes in total, so there is still a lot of memory

left that could be used in the implementation of a compression algorithm.

6.7 Summary

In this chapter we have described how we have implemented our application. We

have designed a simple system, that can give us the time when a specific sample

is obtained. We have also devised a storage format, that we can use to store mea-

surements in the flash. We have designed a simple protocol that is well suited for

communicating over Bluetooth, and which works around the problems we have

discovered with the Bluetooth communication. The final application and the sup-

porting software is available from n<JBJ(L­¬�®(®�n�?MY(J(nBK<? y �°¯<����O4;+®($0L(L98+:4)0$4JH:�?M' .

The application ended up using so little data memory that we can allocate 6

buffers for the Bluetooth communication, ensuring the best transfer rate.

6.7.1 Possible Improvements

Because of the way the application evolved, and the limited time we had to prepare

the application there are several things that could be made better.

All the protocol code should be contained in its own component. As the proto-

col code does not have any state that needs to be saved across a reboot, this
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should be simple. A component with a two simple commands is all that is

needed. One that tells the component to start the offloading protocol, and one

which updates the amount of available pages. The component would then use

an event, to signal when it had received an acknowledgement and memory

could be freed.

The flash memory should be managed by a separate component. This is not as

simple, as the component contains some state information that should be saved

when the node is rebooted. Apart from that, a simple command which would

take a buffer, and write it to the next free flash-page, a command to free mem-

ory, and a command to retrieve a specific page, is all that would be needed.

The command to write a buffer to flash, should signal an event to tell the

application how many pages is left after the write.
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Energy Budget

In this chapter we will discuss the different aspects of the energy budget. We will

select and test batteries for use in the experiment, and estimate how long the node

will be able to run the final application.

When looking at the energy budget, the first thing to decide is how to power

the node. In our case, since the nodes are located on sows, we need some kind of

battery to go with it. The literature about batteries differentiates between a cell and

a battery[39]. A cell is a single electro-chemical cell, while a battery is a collection

of cells. So a normal 1.5 V “battery” is really a single cell, where a 9 V battery is a

battery, consisting of 6 cells. In the following we will use these terms.

We have some limitations affecting the choice of batteries. First of all, the cells

should be sealed, so that they cannot leak, even when placed upside down. The

chemicals inside cells are dangerous, and we do not want hurt the sows. Secondly,

the weight of the battery should be reasonable, as the sow will have to carry the

battery in a neck-collar. Thirdly the output voltage of it must stay above 3 V, until

the battery is completely depleted. We need this as most batteries have a declining

voltage during discharge, and we have seen the node misbehave when powered by

a 3 V transformer.

7.1 Battery Choices

The literature[39] divides batteries and cells into two groups, primary and sec-

ondary. Primary cells are use-once or disposable cells, while secondary cells are

rechargeable.

We limit ourselves to secondary cells. We will have to perform several experi-

ments with them, which makes primary cells an impractical and a more expensive

choice. Of the secondary cells, the 4 most readily available to the average consumer

are:

• Lead-Acid

• Nickel-Cadmium (NiCd or NiCad)

• Nickel-Metal-Hydride (NiMH)

• Lithium-Ion (Li-Ion)

The Lead-Acid cell is one of the oldest types of secondary cells. Its most popular use

is as car batteries, to drive the starter-motor. This is because one of the properties

of a Lead-Acid cell is that it is well suited to provide a high load. Another charac-

teristic property is the low energy to weight ratio. Lead-Acid cells are also difficult

to manufacture in small sizes, and these are not readily available.
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Table 7.1 – Comparison of cell types[14]

Nominal Energy capacity Self discharge
Cell Type

voltage per kg per month
Cycle life

Lead-Acid 2.0 V 30 – 50 Wh/kg 5% 200 – 300

NiCd 1.25 V 45 – 80 Wh/kg 20% 1500

NiMH 1.25 V 60 – 120 Wh/kg 30% 300 – 600

Li-Ion 3.6 V 110 – 160 Wh/kg 10% 500 – 1000

The self discharge of NiCd and NiMH are highest immediately after they have been fully charged.

Part of the self discharge of Li-Ion batteries stems from the protection circuits.

The Nickel-Cadmium cells are most often encountered as a rechargeable re-

placement for primary cells in our household appliances. They are available off the

shelf in R03, R6, R14 and R20 form factors (also known as AAA, AA, C and D),

and are inexpensive. The energy to weight ratio is low, but better than Lead-Acid.

Contrary to Lead-Acid cells, NiCd cells experience a so called memory effect, where

a shallow discharge1 will lower the capacity of the cell. It is possible to reverse this

effect though a couple of full discharge cycles.

The Nickel-Metal-Hydride cells, are just as the NiCd cells, sold as a recharge-

able replacement for primary cells. In recent years they have almost completely

replaced the NiCd cells, because of their higher capacity. Also, they do not con-

tain the toxic Cadmium as NiCd cells does. The NiMH cells also shows the memory

effect, but in a lesser degree than NiCd cells.

The Lithium-Ion cells are known from notebook computers and cell-phones. Li-

Ion cells have both the best energy to weight and the best energy to volume ratios

of the cells described here. Another important property of Li-Ion cells is their high

nominal voltage at 3.6 V. This makes it possible to drive modern electronics directly

without a boost converter using a single cell. Also Li-Ion cells does not exhibit any

memory effect, making them easier for the consumer to use. The disadvantage of

Li-Ion cells are their high price, and the fact that they need protective circuits to

prevent both deep-discharge and over-charging. Either of these events can cause

overheating inside the cell, potentially leading to explosion.

A sibling to the Lithium-Ion cells are the Lithium-Ion-Polymer cells. Their prop-

erties resemble the ordinary Lithium-Ion cells, but it is possible to manufacture them

in almost any form. The price of this flexibility is a little loss in the energy to weight

ratio. However they are obvious candidates for cell-phones, and other devices that

need high capacity, but has little space for cylindrical cells.

Table 7.1 lists the most important properties of these four types of cells. As

can be seen from this table, Li-Ion cells are best in every category. However Li-Ion

cells are very expensive, and the additional protection circuit also adds to the price.

Furthermore the cells are not easily obtainable to consumers. Lead-Acid batteries

are difficult to buy in sizes that are small enough, that we can use them for this

experiment. Both NiCd and NiMH cells are readily available, but we choose to use

NiMH cells for our experiment, because of their higher capacity.

We choose three different cells, from two manufacturers. One from Panasonic

called HHR210A, and two from Ansmann with a capacity of respectively 2300 mAh

1A shallow discharge is a discharge which does not deplete the battery completely, before it is

recharged again.
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Table 7.2 – Comparison of experiment cells

Nominal Manufacturer
Cell

Voltage Capacity
Weight

Panasonic HHR210A[47] 1.2 V 2080 mAh 2496 mWh 29 g

Ansmann 2300 mAh[5] 1.2 V 2300 mAh 2760 mWh 28 g

Ansmann 2400 mAh[6] 1.2 V 2400 mAh 2880 mWh 30 g

and 2400 mAh. Table 7.2 lists the properties of the different cells. We will use 4 cells

to power the nodes, as this will give us a nominal voltage of 4.8 V, and a voltage of

4 V when the batteries are close to completely depleted.

7.2 Battery Experiments

To validate our energy budget we wish to perform a simple test to see if we can

validate the capacity claimed by the manufacturer.

When listing the capacity, the manufactures use the C-rate to specify how the

capacity of the cell have been tested. Discharging a cell or battery at a C-rate of 1 C,

means that it will be depleted in an hour. Likewise discharging a battery at 0.2 C

(also written as C/5) means that the battery will be depleted in 5 hours[39]. During

the discharge, the current drawn from the battery is constant.

7.2.1 Discharging the Batteries

The datasheet capacity for the 3 different cells we use, are all given in 0.2 C. The

rate of discharge will affect the amount of energy the cells can provide[5, 6, 14],

and a higher discharge rate will result in a lower capacity for NiMH cells[5, 6, 19].

To replicate the capacity the experiment, we have to create a load that will deplete

the cells in 5 hours, which requires that the current drawn is approximately 400 mA.

To perform this discharge, we need a way to draw a constant current from the

cells. We also need a way to stop the experiment once we have depleted the cells.

Otherwise we risk damaging them, making it difficult to get repeatable results when

performing several tests in a row with the same cells.

We can use the BTnode for this purpose, as its battery charge indicator can be

used to determine when we should stop discharging the attached battery. We simply

construct an application which turns on all the LEDs on the node, and samples the

battery charge indicator continuously, until the charge drops below a certain level.

When this happens we turn off all the LEDs, and put the CPU to sleep, so it uses the

least possible amount of energy.

Using the node also solves the other problem. The voltage regulator on the

node stabilizes the current drawn from the batteries throughout most of the exper-

iment, even though the voltage output of the batteries decrease.

A modified BTnode, running at full speed, with all 4 LEDs turned on, only con-

sumes approximately 25 mA. At this rate it will take 4 days to discharge a 2400 mAh

cell. To increase the current consumption we can attach a couple of resistors which

the node can turn on and off. Since the MCU on the node cannot provide enough

current to get a high enough current consumption, we use a MOSFET transistor to

turn on and off the resistors. The diagram for this circuit can be seen in Figure 7.1.
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Figure 7.1 – Diagram and picture for the resistor circuit

VCC

56 Ω30k Ω

I/O PIN

GND

The circuit was built as a birds nest, as it was simple enough for this.

Three 56 Ω resistors in parallel will have a resistance of approximately 20 Ω.

These will be provided with 3.3 V, and therefore they will draw 165 mA. The voltage

regulator can at most provide a 200 mA continuous output[46], and if we added

another parallel resistor, the current drawn by the resistors would be 236 mA.

With the resistors turned on, the node will draw around 140 mA, resulting in

a rate of 0.06 C (or C/15), allowing us to deplete the cells in approximately 15

hours. This is relatively far from what the batteries have been tested with, but we

cannot reach 0.2 C with a single node, because of the limitations set by the voltage

regulator.

7.2.2 Capacity Results

For the experiment, we use two digital multi-meters, which continually measure the

voltage of the batteries, and the current drawn from them. The multi-meters output

the measurements 1 – 2 times per second, and a PC logs this data with a time-stamp

in two files.

The test is performed three times on a 4 cell battery, and we continue discharg-

ing until the voltage of the battery is 4 V. We stop at this point, because the cells can

degrade, if discharged below 1 V. Before the first test, the batteries were discharged

using the discharge feature in the battery-charger. Once properly discharged they

were charged, and left in the charger for at least 24 hours, to trickle charge.2 After

the 24 hours, the experiment was started. On the second and third run of the ex-

periment, we did not discharge the batteries, as they already had been completely

discharged during the previous experiment.

The results of the different tests can be seen in Table 7.3 along with the man-

ufacturers specifications. For all three cells the capacity listed by the manufacturer

comes pretty close to the capacity we measure. However as we discharge the batter-

ies slower than the manufacturer, we would have expected to exceed their claims a

bit. One interesting thing to note, is that we measure the capacity of the Ansmann

2300 mAh cell to be higher than the Ansmann 2400 mAh.

Discharge curves from a single discharge of the 3 batteries can be seen in Fig-

ure 7.2. The discharge curves for all of the batteries are close to the ones in the

datasheets. The voltage is declining slowly after the initial quick drop, until the bat-

2When a battery is trickle charged, it is charged at a low rate (usually around 0.05 C) in order to

compensate for the self-discharge. By trickle charging the battery for at least 24 hours, we ensure that it

have reached its maximum capacity[14].

70/120



7.3: Energy Consumption of the Node Energy Budget

Table 7.3 – Result of the capacity experiment

Capacity in mAh
Cell

Run 1 Run 2 Run 3 Avg. Datasheet

Panasonic HHR210A[47] 2026 2033 2023 2028 2080

Ansmann 2300 mAh[5] 2291 2280 2291 2287 2300

Ansmann 2400 mAh[6] 2263 2273 2282 2273 2400

Figure 7.2 – Discharge curves for the 3 tested batteries
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teries are almost completely depleted, where it again drops rapidly. This is really

the best case scenario for us, as it will allow us to use the batteries for the longest

possible period.

A major problem in testing the capacity this way, is that the load on the batter-

ies does not resemble the load they are going to experience during the experiments.

However it still gives us a pretty good idea of what to expect from the batteries, and

especially the very sudden drop in voltage when the batteries are depleted, shows

us that the node will be able to function until it has used all the energy in the

batteries.

7.3 Energy Consumption of the Node

As mentioned in Section 4.2, we started by lowering the energy consumption of the

node in idle state as much as possible. And in Section 5.2 we described how we

could use the power management features of the MCU, to reduce the energy con-

sumption as much as possible. We now want to estimate if the energy consumption

is low enough that we can expect the node to last the 20 days of the experiment.
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Figure 7.3 – Diagram of how the node and battery is connected to the PCI-1202H
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7.3.1 Measuring Energy Consumption

The voltage regulator on the BTnode, ensures that the current drawn remains al-

most constant, even when the battery voltage changes. Therefore we will focus on

the current consumption for our estimations. Using the power consumption will

lead to wrong results, as the power consumed will change as the batteries are de-

pleted.

To measure the current consumption of the node accurately, we need to obtain

measurements at a high rate, or use an analog filter. The analog filter requires

knowledge of analog electronics, so we choose to measure at a higher rate. To

catch all the changes in the node’s current consumption we need something that

measures with a rate of at least 40 Hz. This is because the startup time for the

digital accelerometer is 50 ms, and if we want to be able to see the changes we

need to sample with twice the rate, according to the Nyquist-rate[21].

The digital multi-meters are unable to measure at this rate. Therefore we use

a Data Acquisition card (DAQ) from ICP DAS called PCI-1202H. This PCI card is

able to sample at a rate of 44 kHz. The card measures the voltage, so to measure

the current drawn by the node, we need to place it in series with a 1 Ω resistor.

See Figure 7.3 for a diagram of the setup. Since we can measure the voltage drop

across the resistor, and we know the resistance, we can use Ohm’s law[61] to find

the current:

U = RI ⇒ I =
U

R

When R is 1 Ω, the current equals the voltage drop. From Kirchhoff’s junction

rule[61], we can conclude that the current passing through the resistor equals the

current that passes through the node. This is a very simple way to create an am-

peremeter. But as the nodes current consumption is in the mA range, the voltage

drop we measure is going to be in the mV range. The ICP-1202H can measure in

different voltage ranges, one of which is 0 V – 10 V. A pre-scaler on the board can

be configured to a gain of 100. In this configuration, the board can measure from

0 to 100 mV (i.e. in our case 0 to 100 mA). As the ADC on the board has a 12-bit

resolution, this means that it voltage is measured in steps of 0.0244 mV. This should

be good enough to support our needs.

The PCI-1202H comes complete with drivers for Linux. Unfortunately the ver-

sion of these drivers (version 0.6.5) that were available when we got the board

was for the 2.4 version of the Linux kernel, and we were using the 2.6 version.

Porting the driver was straight forward. As we started to use the board, we discov-

ered that the programs communicating with the board often failed, if they were
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Table 7.4 – List of current consumption states for the final application

Task Duration Current drawn Frequency

Sleeping N/A 0.47 mA N/A

Sampling/storing data 27 ms 6.41 mA 4 times per second

Offloading data 36000 ms 52 mA Once per hour

scheduled by the kernel in an unlucky way. To get around this, we had to move

some of the measurement code from user-space to the kernel. After this the board

was stable enough that we could use it for our experiments. The source code for

the kernel-driver, and a simple user-space library to use the driver is available from

n<JBJ4L±¬�®(®�n�?MY(J(nBK<? y �°¯<����O4;+®�:!A4L*)B: .
7.3.2 Current Consumption Estimations

Now that we have a method to accurately measure the current consumption of

the node, we can proceed to estimate the lifetime of the node. To do this we have

divided the application into separate states. The states and their associated current

consumption can be seen in Table 7.4.

The sleeping state is what the node is in whenever it is not doing anything else.

The Sampling/storing data state is when the node is reading from the accelerome-

ters, and storing the data in flash. This really should be two states, but obtaining a

current estimation for the combination was simpler. Offloading data includes turn-

ing on the Bluetooth module, waiting for a connection, and offloading the data.

We have combined these steps into one, as it was difficult to get a repeatable mea-

surement of the current consumption for the separate steps. The duration is set to

2 times 18 seconds. The 18 seconds can be split into 2 seconds for powering on

the Bluetooth module, 10 seconds waiting for the PC to connect, and 6 seconds to

offload the data. We use twice the 18 seconds to get a conservative estimate. The 6

seconds to offload the data is an estimate obtained by running the finished applica-

tion, and measuring the offload time. As an estimate of the current consumption for

this combined state, we have used the maximum current consumption the module

can draw according to the datasheet[20]. It is a conservative estimation, but we

would rather estimate a too high energy consumption than a too low.

From these values we can calculate the estimated average current consump-

tion, while not sending:

0.47 mA × (1000 ms − 4 × 27.5 ms) + 6.41 mA × 4 × 27.5 ms

1000 ms
= 1.12 mA

So without offloading the data, the node will use on average 1.12 mA. When we

include offloading this becomes:

3600 s × 1.12 mA + 36 s × 52 mA

3600 s
= 1.64 mA

So in total 1.64 mA on average, or 39.36 mAh per day. With 2100 mAh available

the nodes should last more than 53 days. However we will not have 2100 mAh

available because of the self discharge. As the self discharge is rather high for NiMH

batteries (30% per month), a conservative estimate will be that we only have 2

3
of

the capacity available, i.e. 1400 mAh. This would give us an expected lifetime of

35 days, which is still 15 days more than needed for the experiment.
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A problem with this estimation is that it does not take failed offloads and re-

sends into account. The effect of not discharging the battery like in the capacity

test, is also ignored. To get a better estimate of how the failed offloads and resends

will influence the current consumption, we measured the current consumption of a

single node checking into a single PC for 3 days. The average current consumption

over these three days was 1.27 mA, somewhat lower than the previous estimate.

This is most likely because the previous estimate is very conservative, especially

with regard to the power consumption of the Bluetooth module. With an average

current consumption of 1.27 mA the node should last almost 53 days, including the

self discharge of the battery.

7.4 Summary

In this chapter we have selected the cells that we wish to use for the experiment.

We have shown that the claims made by the manufacturers about the capacity of

the cells are correct.

We have also measured the current consumption of the node in different states,

in order to estimate the lifetime of the node. From these estimations it is clear that

most of the current consumption comes from the basic sampling of the accelerome-

ters. If we were to lower this energy consumption further, we would have to either

remove the voltage regulator, replace it with one that performs better, or change

the sample rate.

Our estimation based on measuring the node for 3 days, is that the node will

have a lifetime of at least 53 days. However there are two problems with this esti-

mation:

• The distance between the node and the Bluetooth receiver was less than 1 m,

as they were both attached to the same PC. The distance between the node

and the PC’s Bluetooth module could very well affect the current consumption

of the node during the offloading phase.

• Only one node is present during the experiment. If two or more nodes try to

offload data at the same time, it will affect the amount of time the Bluetooth

module is turned on, as the PC only offloads data from one node at a time.

This will again result in a higher current consumption than actually measured.

While omitting these issues from the measurements will cause a lower current con-

sumption estimate, our lowest and extremely conservative estimation conclude that

the nodes will be able to last 15 days more than the 20 days of the experiment. So

the conclusion must be that the nodes should last throughout the experiment.
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Chapter 8

Field Experiment Setup

In this chapter we will describe how the experiment is setup in the stables. For the

experiment we need the following:

• A way to distinguish the sows from each other.

• A way to protect the nodes from the environment in the stables.

• Positions for the 4 cameras, so that they cover as much as possible.

• To find a place for the PC’s, which we need to capture video from the cameras

and to offload data from the node.

• A position for the Bluetooth modules, so that the nodes can connect to them.

As previously mentioned in Section 3.1, the experiment will be performed from the

21st of February to the 21st of March. During the experiment we will attach nodes

to 5 previously selected sows, to measure their activity.

8.1 Sow Marking and Node Pairing

We need a way to be able to tell the 5 sows from each other. This is needed both for

the manual heat detection, and to tell the sows apart in the video data. Therefore a

distinctive blue mark is sprayed on the back of each sow, which is large enough that

it can be spotted in the video data. Also when we attach the nodes to the sows, the

marking on the back is noted, together with the last 4 digits of the node’s Bluetooth

MAC address. The relation between nodes, sows and marks can be seen in Table

8.1.

8.2 Nodes

We need to attach the node and batteries to the sow, and we need to do it in a way

that both protects the node from the environment in the pen, and prevents the sows

from harming themselves by eating the chemicals in the batteries.

In consultation with KVL, we decided to use a slightly curved box, so that

it would fit to the curve of the sow’s neck. Centralværkstedet at the H.C. Ørsted

institute manufactured the box, which can be seen in Figure 8.1. These boxes are

the single most expensive part of the experiment, costing approximately 2000 DKK

a piece.

To fasten the node inside the plastics box we attached Velcro-tape to the bottom

of the node, and to the inside of the box. The accelerometer board was attached to

the node using double sided carpeting tape. The antenna for the Bluetooth radio is
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Table 8.1 – The nodes and markings used on the 5 experiment sows

Sow Node Marking

Sow 1 4EBC

Sow 2 4D08

Sow 3 4EBF

Sow 4 4D08

Sow 5 4D09

Figure 8.1 – The box housing the nodes and batteries during the experiment

Figure 8.2 – The node, fitted with accelerometer board and Velcro
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Figure 8.3 – Position of the 4 cameras

integrated on the node, eliminating the need for an external antenna. Furthermore

by using plastic for the box, we do not hinder the wireless communication. A picture

of a node, with the Velcro and accelerometer attached — ready for deployment —

can be seen if Figure 8.2.

The batteries needed to power the node, also needs to be fixated inside the

box. Fortunately the spring loaded battery holders we acquired fit perfectly inside

the box, eliminating the need for further fixation.

Before the deployment we ensured that the sows were not able to break the

box, by giving the box to the sows to play with. Small teeth-marks were all the

damage they were able to do.

8.3 Cameras

We need cameras to establish the ground truth for the experiment (see Section

3.2.1). Therefore we installed the 4 cameras in the pen, and placed them so that

they cover the areas where the sows are active. The cameras cannot cover the entire

pen, but the areas that are not covered by the cameras are primarily the places

where the sows are sleeping.

We use 4 AVC301A, which are black and white cameras with a composite out-

put. The cameras allows coaxial cables to be connected, making it possible to use

long cables without any noticeable effect on the image quality. Two of the cameras

have a wide angle lens, the other two have a normal lens.

The position of the four cameras can be seen in Figure 8.3, and the installation

of them can be seen in Figure 8.4. Figure 8.5 contains a picture from each of the

four cameras. Note that one of the experiment sows can be seen in camera 1.

We had to get both power and the coaxial cable to each of the cameras. Fortu-

nately a bar down the middle of the pen, used to cool the sows with water during

the summer, could be used to hold the cables out of reach of the sows.

The cable from the cameras was split close to the two PC’s, so that we could

record the video on both PC’s at the same time.
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Figure 8.4 – The 4 cameras

(a) Camera 1 (b) Camera 2

(c) Camera 3 & 4

Figure 8.5 – The view from the 4 cameras
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Figure 8.6 – The container placed outside the stables

8.4 Servers

The two servers have been installed by Eske Christiansen, and are almost completely

identical. Both machines are fitted with 4 Pinnacle Studio PCTV Rave frame-grabber

cards, and installed with Gentoo Linux. The open source program Motion1 is used

to grab video frames from the cards, and create video streams for offloading.

The two machines are connected to each other through a 100 Mbit/s network,

and they are connected to the Internet through a 2048/512 kbit/s ADSL line, avail-

able at the farm.

Both of the servers run Motion all the time, so that all video data is gathered

on both machines. One of the PC’s offloads the video data through the Internet to

a server at DIKU. A heartbeat is used to determine which of the machines should

handle the upload. The offload is primarily a way to backup the data, but we also

need it to make the videos available to the people at KVL, during the experiment.

The PC’s also handles the offloading of data from the nodes. The PC that first

discovers a node, is the one that handles the offload. The PC’s continually syncs

the offloaded node data between them, so that both has all data collected from the

nodes. This data is also backed up at DIKU through the same mechanism as the

video data.

Because of the harsh environment inside the stables, we decided to place the

PC’s outside the stables in a container, see Figure 8.6. This has the added benefit

that the PC’s can be installed and accessed during the experiment without having

to enter the pen.

8.5 Bluetooth

To handle the Bluetooth communication we acquired two Sitecom CN-502, which

are USB Bluetooth modules, with an external antenna, and a claimed range of up

to 100 m.

Before we began installing equipment for the experiment, we tested the range

of the Bluetooth module, by fitting it to a laptop, placed on one of the feeding sta-

tions in the pen at the corner of the pen. A packaged node in its protective box (see

Section 8.2) programmed to check-in twice a minute, was then placed in all the

1Available from:
���	�������	��
	
	
���2�.�"���1���,��
�	�����	
� ��0 ����0 �,���"C /��
���²!���C ���,���³�����´����C�
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Field Experiment Setup 8.5: Bluetooth

Figure 8.7 – The Bluetooth modules in the middle of the pen

corners of the pen. At each corner we made sure that a connection could be estab-

lished and that data could be offloaded. This test did not reveal any communication

problems. We decided to place the Bluetooth modules in the middle of the pen, thus

halving the maximal distance between the nodes and the modules, just to be on the

safe side.

Placing the Bluetooth modules in the middle of the pen, presented a new prob-

lem. Most commonly available USB cables are no longer than 5 m. Since the pen

is approximately 12 m × 23 m large, we will need at least a 6 m cable, just to get

from the wall of the pen to the middle, and even longer to reach the servers in the

container. One could use USB hubs to extend the reach, but this will only buy us

5 m, per hub. Another solution is to use an USB Extender. An USB Extender consists

of two small boxes, which can be connected to each other using standard Ethernet

cables. One of the small boxes is attached to the USB port of the PC, while the Blue-

tooth module is connected to the other small box. The Ethernet cable between the

two boxes can be up to 50 m long, so this is sufficient for our use.

With this extender we can attach the Bluetooth modules to the same bar that

we use to carry the wires for the cameras. The finished installation is protected by

a plastic bag and duct tape, and elastic bandages. It can be seen in Figure 8.7.
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Chapter 9

Field Experiment Results

The video recording ran from the 20th of February to the 21st of March. The nodes

were deployed the 28th of February, with as freshly charged batteries as possible.

During the experiment we gathered approximately 240 MiB of raw data from the

nodes, resulting in almost 21 million extracted samples. From each of the 4 cameras

we collected between 4.5 GiB and 5.5 GiB of video data. In total this amounts to

approximately 20 GiB of data, which was transfered to DIKU during the experiment.

During the experiment, we encountered check-in problems, nodes that re-

booted unexpectedly, and various problems with the servers. We also had to replace

a single node, because its Bluetooth module fell off.

In this chapter we will discuss these problems. We will also describe the algo-

rithms used to extract the gathered acceleration measurements, and try to validate

these measurements in different ways. We will look at the lifetime of the nodes, and

compare this to our previous estimates. Lastly we will look at which lessons we can

take with us to future deployments.

9.1 Results of Manual Heat Detection

As described in Section 3.2.1, manual heat detection was carried out during the

experiment, so that we would know the exact heat-period of the 5 sows.

Table 9.1 lists the heat-period of the 5 sows in the experiment. The heat-period

for Sow number 4 did not start until after the end of the experiment, which is why

the table does not list a heat-period for her. Later, in section 9.6, we will take a

cursory look at how these heat-periods relates to the activity data gathered by the

nodes.

Table 9.1 – The manually detected heat-periods

Start of Heat End of Heat
Sow Node

Date Time Date Time

Sow 1 4EBC 10/03 10:30 12/03 17:40

Sow 2 4D08 14/03 10:30 17/03 10:30

Sow 3 4EBF 16/03 02:00 17/03 17:30

Sow 4 4D0B — —

Sow 5 4D09 14/03 10:30 16/03 17:30
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9.2 Problems With Node Check-in

The first problem we discovered during the experiment was that the nodes would

not check-in regularly, resulting in data-loss. However both servers were working

correctly and this was not something that we had experienced in our test setup.

Looking at the logs from the check-in program on both servers, it became ap-

parent that in many cases the PC’s had to connect to the nodes at least two or three

times in order to complete the offload. Sometimes even more connections were

required.

The offloading problems seen in the logs on the PC’s, could explain the irreg-

ular node check-in. The back-off algorithm on the node, as described in Section

6.5.1, was designed so that it would take a successful offload to make the node

exit the back-off mode. This was a deliberate choice, as it would prevent the nodes

from depleting their batteries, if something went wrong with the PC side of the

communication.

Instead the back-off algorithm was making it very hard for the node to com-

plete a full offload. Therefore we decided to change the algorithm, even though

it meant that we had to collect all the nodes at the farm to reprogram them. We

changed the back-off algorithm so that it went back to the 10 s interval, just as

soon as a PC had connected to the node. This meant that no matter how many

tries it took to do a complete and successful offload, it would still happen within a

reasonable amount of time.

We reprogrammed the nodes the 11th of March, or on day 18 of the experiment.

While re-programming the nodes, we powered them with a replacement battery, so

that the reprogramming would not affect the energy budget.

In Figure 9.1, the percent of gathered data per day, throughout the experiment

is shown. The horizontal line at day 18, is the point where the nodes were repro-

grammed. For some of the nodes, i.e. 4D09, 4D0B and 4EBC the change of back-off

algorithm seems to have made a difference for the better. For 4EBF the amount of

gathered data seems to have gone down.

The last node has a total dropout of data at day 21, leading us to replace

it with a spare at day 22 (the 15th of March) around 11:20. When we inspected

the malfunctioning node, we found that the Bluetooth module had fallen off the

node. This is likely a side effect of the reprogramming, as we have to be rather

hard handed when removing the battery pack from the box protecting the node.

During the reprogramming, the clamp holding the Bluetooth module have come

loose, causing the module to fall out a couple of days later.

While the change in the back-off algorithm seems to have had some affect,

it by no means explains why the problems offloading the data happens in the first

place. As explained in Section 8.5, we had tested that the nodes were able to offload

data without problems, over twice the distance in the same pen as the experiment

was carried out in. We believe that the problem is caused by the sows sleeping on

top of the nodes. When this happens the range of the Bluetooth communication

is shortened, causing problems for the offloading algorithm. This explanation have

been verified by comparing the video data with the periods of missing data.
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Figure 9.1 – Percent gathered data per day of the field experiment
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Table 9.2 – The number of times the different nodes rebooted

Node Reboots

4D08 4

4D09 10

4D0B 22

4EBC 9

4EBE 0

4EBF 10

9.3 Unexpected Node Reboots

On the 2nd of March we discovered that one of the nodes had rebooted during the

night. We had not seen this behavior in our test setup. Later it also happened to

other nodes, but it did not happen often, at most once each day. Table 9.2 shows

the number of times each of the nodes has rebooted.

The reboot was discovered, because the node started checking in samples num-

bered from zero again. Such a reboot should be easy to discover and correct when

extracting the data after the experiment, and the data loss from it is small. There-

fore we did not take steps to correct the problem.

When we performed the data extraction after the experiment, we discovered at

a single node never rebooted. This was the spare node we deployed when the Blue-

tooth module came loose in one of the other nodes. This node used a custom-made

battery-pack where 4 NiMH cells were welded together. We therefore concluded

that the reboots were caused by the connection between the cells failing, because

the springs of the battery packs was not tense enough.

9.4 Server Problems During the Experiment

Several times, the Bluetooth stack on one of the PC’s stopped working correctly,

with no apparent reason or anything in the log files. Either the Bluetooth module

would never discover any other Bluetooth devices, or we would start getting errors

back from operations that should work.
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To correct this, we stopped the offloading program, removed the Bluetooth

kernel-modules, and reloaded them. Usually this procedure corrected the problem.

In a single case the server crashed, and was then manually rebooted. In the period

from the crash to the reboot, the other server handled check-in and the gathering

of the video data, as it should.

Another problem with the servers was that the time synchronization between

the two servers did not work as expected. Both servers used NTP1 to synchronize

their time, but at the end of the experiment they were at least 10 seconds apart.

Unfortunately this was not discovered during the experiment, so we do not have

any explanation as to what caused this. Also we do not know if there was a 10

seconds difference all the time, or if the machines in periods had matching time.

9.5 Data Extraction

We have to extract the acceleration measurements from the collected raw data sent

by the nodes, to a format that the people from KVL can import into their analysis

tools. We will start by describing the simple algorithms that we originally expected

to use, and will then go into detail about how the problems during the experiment

affects these algorithms. Lastly we will present the final solution.

9.5.1 The Original Extraction Algorithm

We originally expected to be able to extract the data, by performing the following

steps:

1. Merge the data from the two servers.

2. Convert the sample numbers to wall clock time.

3. Output the data as a .CSV file.

Merging the data from the two servers, is easily done. The sample number contained

in each data packet (see Section 6.2 for details), can be used to uniquely identify

the data packets. So if a node have offloaded half of its data to one PC, and then

offloaded the whole to the other PC, we only use the page from one of the machines.

Which one is used will not matter as they are identical. The packets that only exists

on one of the servers is also included in the merge.

To convert the sample number to wall clock time, we must first recap how the

time synchronization between the node and the PC is done. In Section 6.1 we de-

cided that the time synchronization works by the PC time-stamping the initial pack-

ets. These initial packets contains the nodes current sample number. From these

pairs of time stamps and sample numbers, we can calculate the average time be-

tween two consecutive samples using the algorithm in Algorithm 9.1.

With the result from this algorithm we can find the time when the first sample

was measured (epoch), by looking at the information from the first initial packet

(fip):

epoch = fip.server_time − fip.sample_number · SecsBetweenSamples()

From this epoch, we can calculate the time when any sample was obtained:

sample_time = epoch + sample_number · SecsBetweenSamples()

1Network Time Protocol
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FINDING THE AVERAGE TIME BETWEEN TWO CONSECUTIVE SAMPLES (9.1)
z+{

Input: Time-sorted list of all initial packets for both servers (init_packets)|*{
Output: The number of seconds between two consecutive samples}f{
SECSBETWEENSAMPLES()~^{

prev_sample = init_packets[0].sample_number;� {
prev_time = init_packets[0].server_time;�f{
secs_between_sample_sum = 0;�f{
count = 0;�f{
for (i = 1 ; i < length_of(init_packets) ; i++) {�f{

sample_diff = init_packets[i].sample_number - prev_sample;z	�f{
time_diff = init_packets[i].server_time - prev_time;zCz+{
secs_between_sample_sum += sample_diff / time_diff;z�|*{
count++;z	}f{
prev_sample = init_packets[i].sample_number;z�~^{
prev_time = init_packets[i].server_time;z � {

}z	�f{
Return secs_between_sample_sum / count;

Now that we know how to merge the data from the two servers, and how to calcu-

late the time for a specific measurement, we can extract all the data. We take the

merged data, and sort it according to sample number. For each packet, we read the

sample number. We then output all the samples, together with the current sample

number. The sample number is incremented each time we have read both an analog

and digital measurement, or when two analog or two digital measurements occurs

after each other.

9.5.2 Taking the Experiment Problems into Account

The procedure described in the previous section could have been used if the nodes

had not rebooted during the experiment, and if the time synchronization between

the two servers had worked. The worst of these two problems is the node reboot,

because if the nodes had not rebooted, we could simply have discarded the time-

stamps from one of the servers, using the other for all time calculations.

To extract the data in the face of these problems, we will have to perform the

following tasks:

1. Calculate the average time between samples, separately for each server.

2. Find the points in time when the node have rebooted, combined for both

servers, and calculate the sample numbers for these points.

3. Adjust the sample numbers, so that each data set appears as it would have if

the nodes had not rebooted.

4. Merge the datasets.

5. Output the data as a .CSV file.

Instead of simply merging the two datasets, we now have to perform two new steps,

before we can merge them.

To calculate the average time between the samples, we only need to perform a

minor adjustment to the algorithm from the previous section. If the current sample
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Table 9.3 – The periods the nodes have gathered data, and the coverage

Node First Measurement Last Measurement Days Coverage

4D08 2005/02/28 14:05 2005/03/13 20:31 14 44.607%

4D09 2005/02/28 09:59 2005/03/19 22:47 20 71.756%

4D0B 2005/02/28 10:06 2005/03/19 22:48 20 64.567%

4EBC 2005/02/28 10:28 2005/03/19 21:06 20 56.139%

4EBE 2005/03/15 11:07 2005/03/19 21:56 5 61.910%

4EBF 2005/02/28 10:09 2005/03/19 23:02 20 66.717%

number is lower than the previous sample number, we should skip ahead to the

next pair. This will leave the reboots out of the calculation.

The next step is to determine the points in time where the node have rebooted.

To do this we traverse all the initial packets, and find the ones where the sample

number is less than the previous number. For such a packet, we need to figure

out what the time was when the node rebooted. This can be done using the same

approach as we use to find the epoch in the previous section. After this is done,

separately for both servers, we need to combine the reboot times into a single list.

We locate any reboot times from the two lists that are less than 2 minutes apart, and

delete one of them. The resulting list is then used to calculate the sample numbers

the nodes should have had at the time they rebooted.

Using this list of reboots, we can proceed to the next step, and change the

numbering of all the pages. For every page that belongs to a check-in that happened

after a reboot, we adjust the number by adding the sample number from the reboot

list. After this we can merge the two datasets, using the same merge algorithm as

described in the previous section.

9.5.3 Anomalies in the Extracted Data

While the algorithm described in the last section should cover the problems with

the time synchronization between the servers and the rebooting nodes, a couple of

anomalies in the dataset still show up. After adjusting the sample numbers, three of

the nodes have decreasing sample numbers, when the pages are sorted according

to the receive time. In all cases the receive time is late the 7th of March, or early the

8th of March. Digging further shows that the decreasing sample numbers happens

just after a node has rebooted.

This suggests that one of the servers have been running with a wrong time for

a period. This would most likely occur in conjunction with a reboot of the server.

However we have not performed a manual reboot around that time, and we do not

have any indication of an unassisted reboot. The cause of these anomalies remains

unknown. To ensure the integrity of the extracted data, we simply remove the pages

that exhibit this problem.

Some properties of the extracted data can be seen in Table 9.3. The “First

Measurement” column, shows when the nodes were turned on. The node 4D08

was started later than the others, because the power was not connected correctly,

the first time it was attached to the sow. This was also the node, which lost its

Bluetooth module after the reprogramming, and was replaced with 4EBE. From the

“Last Measurement” column, we can see that the nodes stopped checking in late
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on the 19th. We did not remove the nodes until Monday the 21st, but the Bluetooth

modules on the two servers stopped working before this happened. As the heat-

period was over, we did not try correct this. The coverage varies a lot: The best

node has a coverage of approximately 72%, while the worst has approximately

45%. Overall we collected approximately 60% of the data. As previously explained

in Section 9.2, the lost data seems to be caused by the sows sleeping on the nodes.

Because the sows spend much of their time sleeping, the coverage will depend

on where in the stables the specific sow is sleeping. This can explain the large

difference in coverage.

9.6 Validating the Collected Data

To ensure that the data collected from the nodes is correct, we want to perform

two validations. The first validation will assert that the dataset conforms to our

expectations, by comparing the two datasets to each other and to the gravitational

acceleration.

The second method will seek to establish a correlation between the dataset and

the video data. This will verify that our time-stamping and extraction algorithms

work correctly.

9.6.1 Verifying the Correctness of the Dataset

To verify the correctness of the dataset, we must first setup some assumptions about

what it should contain. The tests in this section have been devised by Cécile Cornou

and Peter Sestoft at KVL.

We expect that the largest influence on the measurements, by far, will be the

gravitation. So we can convert the raw data from the 3-axis accelerometer to the

corresponding g value. When we have the g values for all three axes, they can be

used to create a vector, which will point in direction of the acceleration. Most of

the time, it will point directly towards the ground, and have a length of one. The

average length of this vector should therefore be close to 1 g.

If this test shows that the data from the digital accelerometer is correct we

can proceed to verify the data from the analog accelerometer. For this we have two

options:

• We can convert the measurements for each axis to g, and compare the result

with the corresponding results from the digital accelerometer.

• We can find the slope and offset, needed to convert the output of the analog

accelerometer to the g measurements obtained from the digital accelerometer.

We will focus on the first approach.

To perform these verifications, we need to know how the axes on the two ac-

celerometers correlate to each other. We also need to know how to convert the raw

values we obtained in the experiment to g.

As described in Section 4.1.7, the X axis of the analog accelerometer should be

identical to the X axis of the digital accelerometer with the sign reversed, and that

the Y axis should be the same for both accelerometers.

The conversion to g is different for the two accelerometers. The digital ac-

celerometer is the most simple. The output from each axis is a 12 bit signed integer,
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Table 9.4 – The average length of the acceleration vector for the 6 nodes

Node Average Distance from 1 g

4D08 1.037 g 0.037 g

4D09 0.996 g 0.004 g

4D0B 1.019 g 0.019 g

4EBC 1.016 g 0.016 g

4EBE 0.987 g 0.013 g

4EBF 1.054 g 0.054 g

Table 9.5 – Comparison of the average of the X and Y axis of the digital and analog

accelerometer

Node Digital X Digital Y Analog X Analog Y

4D08 0.381 g 0.016 g −2.434 g −2.408 g

4D09 0.216 g 0.045 g −2.513 g −2.223 g

4D0B 0.357 g −0.126 g −5.489 g −5.215 g

4EBC 0.268 g −0.092 g −2.556 g −2.363 g

4EBE 0.467 g 0.256 g −2.690 g −2.227 g

4EBF 0.365 g −0.070 g −2.498 g −2.243 g

where x4A<xBxBx corresponds to 0 g, x4A(�B�B� corresponds to −2 g and x4A+µM�B� corresponds

to 2 g. To convert from the raw value, the following formula can be used:

acceleration = 2 g · raw/2048

For the analog accelerometer, the output voltage is 1.65 V, when an axis experi-

ences 0 g, and the output voltage changes with 0.174 V for each g. The voltage is

measured as a 10 bit unsigned integer, where xMA+xBxBx corresponds to 0 V and xMA+k4�B�
corresponds to 3.3 V. So the conversion formula for the analog accelerometer is:

acceleration =
1.65 V − 3.3 V · raw/1024

0.174 V/g

In Table 9.4 the average length of the acceleration vector from the 3-axis digital

accelerometer is listed for each of the nodes. As we can see from the table, the

average is very close to 1 g in all cases. This suggests that the measurements from

the digital accelerometer are valid.

In Table 9.5, the average for the X and Y axis of the digital and analog ac-

celerometers are listed. From this table it is obvious that either the measurements

from the analog accelerometer are wrong, or there is an error in the formula that

convert from the raw reading to g.

To test if the conversion formula is correct, we placed a node with the ac-

celerometer board attached, flat on a table. In such a position both axes of the

accelerometer should measure 0 g. We then raised the board so that it was perpen-

dicular to the table. Depending on which side the node rests on, we should measure

−1 g or 1 g on one of the axes, and 0 g on the other. For this test, we reused a test

program that was previously constructed to ensure that all accelerometers returned

valid measurements. In all cases, we got the expected results, and tries to place the

node so that each axis should measure 0.7 g also gave the expected result.
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When we performed the same tests with the application used in the field exper-

iment, the results were not correct. Further investigation revealed a bug in the test

application, so that the analog accelerometer was never turned off. Fixing this bug,

caused the test application to exhibit the same behavior as the application used for

the field experiment.

The problem turned out to be a too short turn-on time. Where it should have

been 80 ms, as described in Section 5.1.1, it was only 20 ms. This makes it impossi-

ble to convert the measurements to g. It might still be possible to use the measure-

ments for heat detection, as KVL have shown that the analog measurements are in

fact correlated to the digital measurements.

The measurements from the digital accelerometer seems to correlate with what

we expect. In the next section we will try to further ascertain that the time-stamps

on these measurements are correct, by correlating them to the ground truth.

9.6.2 Correlating the Acceleration Data to the Video

To ascertain that the time-stamps on the gathered data from the digital accelerom-

eter data is correct, we will have to correlate the extracted data with the gathered

video data.

A way to do this, is to manually find periods in the video data where the sow is

active. We then need a way to automatically find active and inactive periods from

the extracted dataset. Then we can compare the results to see if the two approaches

produce the same result.

To find active periods in the dataset, we use the Elastic Burst Detection pro-

gram, developed at New York University[63]. The program can find bursts of high

values in a dataset. To prepare the extracted data for the Elastic Burst detection

program, we take the scalar of the difference between two raw measurements from

the digital accelerometer. Whenever this scalar is greater than 20, we output a 1,

otherwise we output a zero. The burst detection program is then used to find bursts

with a sum greater than 600, in a window of 1000 data points. This means that

60% of the values in the window should be ones. These windows will correspond

to the sow being active. The window size and threshold are found through experi-

mentation on the data gathered from node 4D09, on the first day of the experiment.

We will not use this day for the validation, as this would ruin the objectivity of the

validation. Only using a single node for the validation, also means that the method

is not calibrated to the other sows. This is on purpose, as it will provide us with a

clearer view on how different the data from the sows are.

To make sure that all the data can be correlated we have to look at data from

late in the experiment, where the chances of the time being wrong are highest. To

ensure that our method actually works, we will also look at the beginning of the

dataset, where we are sure the time is correct. Therefore we will concentrate our

efforts on the 1st of March, and the 18th of March. Both of these days are outside

the heat-period for all the sows.

Describing the sows movements from the video data is a time-consuming pro-

cess. We will therefore only look at a 5 hour window from 00:00 to 05:00. The

reasoning behind this choice is that the auto-iris function in the cameras does not

work very well, so when the sun is up, the video is over-exposed, making it hard to

discern the markings on the back of the sows. The sows are active during the night,

so the chosen period should not present a problem.
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Figure 9.2 – Activity plots from 0:00 to 5:00
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(b) The 18th of March

The green areas are the periods where the sow is active, and the grey areas are the periods

where the data is missing.

In Figure 9.2, the activity plots from the 1st and 18th of March can be seen.

Table B.1 and B.2 in Appendix B lists the activity of the 5 sows in the experiment.

A ↑ in the table means that the sow was seen standing. The sow is standing until a

↓ is plotted in the table. The ↓ means that the sow is laying down. The last symbol

⊗, means that the sow walked out of view. We should not expect to be able to find

exact matches between the plots and the tables. However we should be able to see

if the walking periods marked in the tables, are in the vicinity of the active periods

on the plots.

If the 1st of March is compared, we can see that most of the activity periods

in the tables matches activity periods in the dataset reasonably close. However, one

of the nodes, ¯BE+xB¨ , does not have any active periods at all, neither in the table

nor in the plot. This is most likely because the sow is sleeping during this period.

If the period from 5:00 to 6:00 is observed on video, which is just outside the

period covered by the graph, it can be seen that the sow starts to move around.

This matches with the output from the burst detection code.

For the 18th of March there is very little activity in the plot. The data for nodes

¯BE+x(¨ , ¯BE+xB¶ and ¯Bs(7<� matches the graph. However for ¯(E+xM7 there is no active peri-

ods, even though there should be some according to the video. The same is true for

¯Bs(7<P . This can either be caused the time synchronization not working correctly, or

by the fact that the activity detection method is not calibrated correctly, and there-

fore leaves out periods of activity. As 3 of the 5 nodes match, we conclude that the

time synchronization works as expected.

As a cursory look at heat detection, we have included the full day activity plots

from the 1st of March, and from a single day in the middle of the heat-period, for

each of the sows that experienced heat during the experiment in Figure 9.3. From
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Figure 9.3 – Whole day activity plots for the 4 sows that experienced

heat during the experiment
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(b) A day in the middle of the heat-period

these graphs, it looks as if the sows are more active during the heat-period, than on

a normal day. However we will not go into more detail on this, as it is beyond the

scope of this thesis. The data have been handed to the people at KVL, where they

are currently devising a model for heat detection in much more detail than we have

done here. However from the activity graphs it seems the creation of a model this

should be feasible.

9.7 Node Lifetime

Included in the initial packet sent when a node checks in to a PC, is the current

voltage of the battery-pack. This was included so that we would be able to discover

if the nodes were running out of power before the end of the experiment.

When the experiment ended, the nodes were taken off the sows, and placed at

DIKU, without turning them off. After a few days, we started the check-in handling

application on a PC close to the node. We left this application to run, until the

nodes would no longer check in to the PC, to get an idea of how long the nodes

could have survived. We only included the 4 nodes that were present during the

entire experiment.

Figure 9.4 displays the voltage curves from the experiment. The nodes were

taken off the sows after 20 days, and after 24 days the nodes started to check-in to

the PC at DIKU. Between these two days there are no data points, which is why the

line in between them is smooth. There is no noticeable change in the slope of the

lines after 11 days, where the nodes were reprogrammed. The decline in voltage

matches what we have seen when we measured the capacity of the batteries in

Section 7.2.2.

Table 9.6 lists the last check-in that happened before the nodes experienced

their first brown-out. The shortest lasting node, ¯Bs(7B� died after approximately 30
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Figure 9.4 – The voltage curves for the nodes during the experiment
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Table 9.6 – Last post-experiment check-in, where the node have not rebooted due to

brown-outs

Node Date Time Total Days

4D09 08/04 19:28 40

4D0B 01/04 07:09 32

4EBC 06/04 17:53 38

4EBF 29/03 06:12 30

92/120



9.8: Lessons Learned Field Experiment Results

days, and the longest lasting node, ¯BE+x(¶ , ran for 40 days. The long tail seen on this

node is continually at 3.3 V for the last 3 days, but the node does not reboot until

day 40. Exactly why this happens is not clear to us. However a guess is that the

node continues to run, even though the input voltage becomes lower than 3.3 V. As

the voltage regulator cannot boost the voltage to 3.3 V, the node runs on the same

voltage as the batteries provide. This in turn means that the ADC reference voltage

is also lowered, and explains why the output from the ADC becomes steady at this

point.

The nodes ¯(s(7<� and ¯(E+xB¨ both used the Panasonic 2100 mAh cells, while ¯(s(7+P
and ¯BE+xB¶ used respectively the Ansmann 2300 mAh and 2400 mAh cells. If we

assume that we could use 2

3
of the cell capacity in the experiment, this leaves us with

an average current consumption between 1.66 mA and 1.94 mA, which is pretty

close to our conservative estimation. However it is far the result we obtained by

measuring the current consumption of the node over 3 days. This can be explained

by the many connection problems, which was not experienced during the 3 day test.

The node with the shortest lifetime was still able to run for 30 days, 10 days

longer than the experiment lasted. So we reached our goal, of making the nodes

last through the entire experiment.

9.8 Lessons Learned

While we encountered many problems during the experiment, we have made good

use of the lessons from the related work (see Chapter 2). We only described one

problem in that chapter, that we were caught by. This is the range problems with

the radio communication. We had taken a lot of precautions to avoid this problem,

but apparently it was not enough. Our lesson in this case is that we should expect

the range to be lowered when the radio is placed in close proximity to an animal.

This correlates somewhat with one of the lessons from ZebraNet, where they expe-

rience a much lower range when the nodes are deployed on the zebras[62]. If this

experiment was to be repeated with the same radio equipment, we should connect

at least two Bluetooth modules to each PC, and place them as far away from each

other as possible. This would allow a better coverage of the entire pen.

Another lesson we can take with us, is that we should ensure the proper func-

tioning of the sensors using the same application that is going to be deployed. As we

have demonstrated, programs which test only a specific functionality can be prone

to errors, which does not exist in the final application. Another way to catch such

errors would be to extract the data during the experiment. That way we could have

discovered the error earlier, and corrected it before the end of the experiment.

This leads us to the problems we had extracting the data. With regard to the

time synchronization on the two servers, the only thing we could have done differ-

ently was to manually check that the time was synchronized.

With regard to the reboots, we have shown that these can be solved by using

welded battery packs. This lesson is important for other projects, where the nodes

can move around, as these will be prone to the same problems. However the welded

battery packs are more expensive, and leads to more difficult packaging, especially

for nodes which include a battery holder, such as the Mica motes.

Another thing that could help alleviate the rebooting problems, is if we had

a reboot counter on the node. If we increment a number stored in the flash or
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EEPROM each time the node reboots due to power loss we would know how many

times the node had rebooted. We could even just zero a bit each time, so we would

not have to erase the flash. If we had this information when we extracted the data,

we could have used it to treat the data from each reboot as a separate dataset,

enabling the use of the simple extraction algorithm.

On the positive side, our packaging of the node worked. When inspecting the

boxes after the experiment, there were no signs of water (or manure) entering

the boxes. This is even though the neck collar slided down, so that the node was

hanging underneath the sow, and therefore was laying directly in the manure.

Furthermore we have shown that even extremely power hungry radios can be

used in sensor network deployments, given the correct duty cycle. As the power

consumption of Bluetooth modules have gone down, since the introduction of the

ROK 101 007 modules, used on the BTnode 2.2, Bluetooth might even be a better

choice in some deployments than other radio technologies, due to its high band-

width.

9.9 Summary

In this chapter we have described the problems encountered during our experi-

ment. We have described how we were able to extract the data, even in the face

of the problems we encountered. Furthermore we have verified that the data we

extracted is correct, and that we can correlate it with our ground truth. The data

from the experiment both as the raw data and in its extracted form is available

from n<JBJ(L±¬/®(®0n+?MY(J(nBK<? y �°¯+�d��O4;�®MOB$4J<$ . The application to extract the data is avail-

able from the same location.

While we experienced many problems during the experiment, especially con-

nection problems, we still have good coverage of data (approximately 60% overall)

when compared to some deployments[55, 57]. Then again other deployments have

above 80% of gathered data[33], so there is still room for improvement. The Wired

Pigs project[42] deployed two networks, where one delivered at most 30% of the

expected data, and the other delivered close to 90%. But we have gotten enough

data, that it should be possible to create a model from it, which was the most im-

portant goal of the project.

With regard to energy consumption, our conservative estimation was pretty

close to the mark, while the estimation obtained by measuring the power consump-

tion for 3 days was very much off. As discussed in Section 9.7, this is most likely

caused by the communication problems, which did not occur during our estimation.
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Chapter 10

Compression

In the experiment at the farm, the data stored on the node was not compressed. We

simply stored 12 bits of data for each axis of the 3-axis digital accelerometer, and

10 bits of data for each axis of the 2-axis analog accelerometer, or in total 60 bits

per measurement.

If we had compressed the data we would have been able to store more data in

the flash. This could be used to either lengthen the lifespan of the node, or make it

more resilient to check-in failures.

We can lengthen the lifespan if we compress all the data, and offload only when

the node has almost filled its memory. This will result in a better duty cycle of the

radio. If the compression uses less energy than offloading the data does, the lifetime

of the node is increased.

However the field experiment has shown that it would be better to make the

node more resilient to check-in failures. We can do this by compressing the data,

but instead of waiting until the node is filled up, we initiate the offload after an

hour (i.e. the same amount of time between offloads as in the field experiment).

This way there is less chance that the node has to drop data, as the check-in can fail

for a longer period, before this happens.

In this chapter we will look at different compression algorithms, and create a

framework for testing them. The focus of this testing will be how the algorithms

would have affected the field experiment. We will evaluate two general purpose al-

gorithms, and design one specifically modelled to our dataset. We will evaluate the

algorithms with regard to compression ratio, compression speed and current con-

sumption, as all three will affect the algorithms performance in a real deployment.

10.1 Overview of the Data

To have a better idea of how the data from the nodes can be compressed, we will

take a look at how the 21 million samples obtained during the experiment is dis-

tributed.

In Figure 10.1 the number of times each of the possible values in the raw data

occurs, is plotted. For the digital accelerometer, we can see that the values we obtain

are spread out evenly over a wide range. If we look at the analog accelerometer, we

can see that the data is not spread out, but instead lumped together around a few

values. The reason behind this, as described in Section 9.6, is that the wrong startup

time is was used for the analog accelerometer.

As the data from the digital accelerometer is spread evenly across a wide range,

compressing the raw values might not be the best possible solution. If we consider
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Figure 10.1 – Frequency of the raw data from the accelerometers
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that a sow spends most of its day sleeping, we would expect large periods where

the measured acceleration does not change much. Then a short period with large

changes, and then back to a long period with small changes. The box containing the

accelerometer does not necessarily end up oriented in the same direction each time

the sow lies down, which affects the raw measurements. However the difference

between two consecutive samples should be about the same. To see if this really is

the case, we have plotted the difference between two samples. The resulting graph

can be seen in Figure 10.2.

Looking at the graph for the digital accelerometer, we can see that the data

becomes less spread out. This indicates that it should be easier to compress the

difference, than the raw values. For the analog accelerometer we can see the same

trend, although to a lesser extent.

As the data from the analog accelerometer in no way resembles the data we

would expect if the accelerometer had been properly initialized, we decided to ex-

clude it from the compression algorithm testing. We suspect that the data would

compress much better than correctly measured data, as it spans so small a range of

values. Therefore, if we included it in our tests we would get better compression

ratios than if the data had been correct.

10.2 Choosing Compression Algorithms

When choosing a compression algorithm for use on the BTnode, there are several

limiting factors that influence the choice. First of all, the amount of memory avail-

able to the compression algorithm is maximum 1.5 KiB, as we have disabled the

external memory, and the application takes up 2.3 KiB of the 4 KiB (see Section
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Figure 10.2 – Frequency of the difference between two measurements

−4200 −3700 −3200 −2700 −2200 −1700 −1200 −700 −200 300 800 1300 1800 2300 2800 3300 3800
0

20000

40000

60000

80000

100000
Digital X
Digital Y
Digital Z

−2048 −1548 −1048 −548 −48 452 952 1452 1952
0

200000

400000

600000

800000

1e+06
Analog X
Analog Y

6.6 for details). This is very limiting as especially algorithms based on a dynamic

dictionary, will have trouble producing good results. On the other hand, if a fixed

dictionary is needed, this can be stored in the node’s program memory, where we

can comfortably allocate 16 KiB or more. However a large fixed dictionary will af-

fect the lifespan of the node, as there will be less flash-memory available for storing

the sampled data in.

Another limitation is the processing power. The compression of the five sam-

ples obtained from the accelerometers must not take longer than approximately

200 ms. If it does, the node will not be able to compress the data at the rate it is

obtained. But spending even 100 ms on the compression might be too much, as it

will raise the energy consumption, and thus lower the node’s lifespan. Lastly it will

be an advantage if the algorithm is able to compress the data one sample at a time.

Otherwise we will have to collect the samples in a temporary buffer, further raising

the memory requirements of the algorithm.

All of these limitations have a severe impact on the available compression al-

gorithms, and on the performance and implementation of these. For example when

implementing the Lempel-Ziv-Welch (LZW) compression algorithm, it is customary

to use a hash table during the compression. We cannot do that on the node, due

to the memory limitations. A further implication of this, is that we cannot simply

reuse a previous implementation of an algorithm, as they usually require much

more memory in order to work, and often uses dynamic memory allocation which

is not available in TinyOS.

In the following sections we will describe three different compression algo-

rithms that are well suited for use on the node.
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10.3 Huffman Coding

The Huffman coding[30] is a statistical code, which outputs variable-length codes.

The frequencies of the different symbols in the input data is used to assign unique

codes to each symbol, while ensuring that the most common symbol receives the

shortest code.

A problem for the Huffman coding, is that the compressor must either know

the frequencies of different symbols in the data it compresses in advance, or it must

do a pass of the data before compressing it, to calculate these frequencies.1 We do

not want to do a pass of the data, as we want to compress it as it arrives. Also, if

we did pre-process the data, we would have to include the Huffman codes used to

encode the data, in the communication stream.

If we instead use a static set of frequencies, we can compress data as it arrives,

and we do not have to transfer the used Huffman codes, as both ends of the com-

munication knows them in advance. And since we already have run the experiment,

we have a good idea of what the frequencies of the input data is going to be. The

static Huffman codes can be stored in the nodes program memory, where it will not

take up any RAM. If the codes are stored in an array, where the symbol to encode

is used to lookup the corresponding code, the run-time of encoding a single symbol

will be constant.

For the symbol list, we can choose to use either 8-bit symbols, and convert

each accelerometer measurement into two symbols, or to use 12-bit symbols for the

digital accelerometer, and 10-bit symbols for the analog accelerometer.

10.3.1 Generating the Code Table

To generate the code table, we must first create a Huffman tree of all the symbols

that should be handled by our Huffman encoder. From this Huffman tree, we can

decide the Huffman codes for each symbol.

To generate the Huffman tree we will use an algorithm that imposes further re-

strictions on the tree than the original Huffman algorithm does. We go through the

input data, and create a frequency table. This table is then used to create a priority

queue. In this priority queue there can be two different kinds of elements, Symbols

and Nodes. A Symbol represents a symbol in the data, and has the frequency of the

symbol, and a depth of zero. A Node has two children, each of which can be either

a Symbol or a Node. A Node also has a frequency, which is the sum of the frequency

of its children, and a depth which is the maximum of the children’s depth plus one.

The priority queue is sorted first according to frequency, and secondly accord-

ing to depth. In both cases the lowest values goes to the top of the queue. The

Huffman tree is then generated using the following algorithm in Algorithm 10.1

To illustrate this, we will generate the Huffman tree for the frequency Table

10.1. The resulting Huffman tree can be seen in Figure 10.3. The first two Symbols

we extract from our priority queue are O and $ . These are used to create a new

Node with the frequency 10. The next two Symbols are
y

and ) , as they both have

zero depth, while the new O(·<$ Node has depth 1. The Symbols
y

and ) results in a

new Node with a frequency of 20. Then O(·<$ and Q are combined. Then
y ·9) and D ,

and lastly OB·<$(·BQ and
y ·9)0·<D are combined.

1Another option is to use the adaptive Huffman algorithm[51], which performs this frequency calcu-
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GENERATING A HUFFMAN TREE (10.1)
z+{

Input: The priority queue (q)|*{
Output: The root of the Huffman tree}f{
GENERATECODETREE()~^{

while (q.size() != 1) {� {
left = q.top();�f{
right = q.top();�f{
q.push(new Node(left, right));�f{

}�f{
Return q.top();

Table 10.1 – A frequency table, for Huffman tree generation

Symbol Frequency

a 6

b 10

c 10

d 4

e 27

f 11

84

b

20

c

e

4737

f10

ad

Figure 10.3 – A wide Huff-

man tree, as generated by our

algorithm

e

21

c f

47

84

10b

20

d a

Figure 10.4 – A deep Huffman tree

Table 10.2 – The generated Huffman codes

Symbol Wide tree code Deep tree code

a 001 1111

b 100 110

c 101 00

d 000 1110

e 11 10

f 01 01
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Table 10.3 – Our different versions of the Huffman coding

Name 8-bit symbols Difference

nBW+QBQ�UH$0' X

nBW+QBQ�UH$0'9XMO9:�Q(Q X X

nBW+QBQ�UH$0'9X�>(n�?B84D
nBW+QBQ�UH$0'9X�>(n�?B84DBX4O9:CQBQ X

From the Huffman tree, we can generate the Huffman codes. We assign a bit-

string to each symbol in the tree, by adding a 0 to the bit-string each time we

descend through left branch, and a 1 each time we descend through a right branch.

So the code for O in the our tree is xBx(x , as we need to go left 3 times in the tree to

reach it. All the codes for the tree can be seen in Table 10.2.

If we choose not to impose the additional sorting according to depth, we could

end with a Huffman tree as seen in Figure 10.4. As can be seen, this tree is one level

deeper, than the one created by our algorithm. The codes for this tree is also listed

in Table10.2.

It is important to point out, that both the wide and the deep tree are completely

valid Huffman trees, and when the data used to generate the frequency table is

encoded, the resulting output will have the same length, no matter which tree is

used. However we have a preference for the wide tree, as this provides the shortest

codes. The length of the codes is important when we wish to store the code table

as a big array, as the longest code determines how many bits will be used to store

all of the codes. So the length of the longest code, is proportional to the amount of

program memory the table will use.

10.3.2 Implementation Notes

We choose to implement 4 different versions of the Huffman coding. The names of

these different versions, together with their properties can be seen in Table 10.3. We

choose to implement both a version using 8-bit symbols, and one using the whole

raw value, and for each of these we have a version encoding the difference, and one

encoding the raw values. We did this to see how the compression ratio is affected

by these different choices.

We created a program Y+DM'�D4K<$4J<DBX<)M?4OBD�% , which can create the Huffman codes

for the 4 different versions. It takes a CSV file containing the data extracted from

one node as the input, and outputs a C header file. This C header file contains both

the Huffman code table, and the Huffman tree. The codes are needed to compress

data, and the tree is needed to decompress the data.

The code table is stored in a large array. For each symbol, the length of the

code, and the actual code is stored. The length is needed because we wish to have

a fixed length for all the entries, so that we can find the entry for a specific symbol

quickly. The length and code are stored bitwise, so if we need 32 bits to represent

the longest code, we need 5 bits for the length, resulting in 37 bits per entry.

We could have encoded the table in another way, so that we did not need to

store the length. Instead we could have prepended each code with a 1 bit, and then

lation on the fly, using an in-memory sorted table to assign codes to the symbols.
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Table 10.4 – Total size of compressed data, when compressed with the 4 Huffman

versions and different code tables

Total size of the compressed data in MiB

Algorithm Code table

4D08 4D09 4D0B 4EBC 4EBE 4EBF

nBW<QBQ�UH$M' 97.28 97.10 96.78 96.88 98.92 96.84

nBW<QBQ�UH$M'�XMOH:CQ(Q 103.84 96.47 102.83 99.22 103.81 107.95

nBW<QBQ�UH$M'�X�>Bn+?B84D 83.25 83.40 83.11 83.22 85.09 82.93

nBW<QBQ�UH$M'�X�>Bn+?B84D<XMO9:�Q(Q 90.63 82.73 89.80 89.58 88.43 96.21

added 0 bits in front of this until all codes were the same length. This way we would

only have needed 33 bits to store 32 bit long codes. However storing the length in

the array was simpler to implement, so we used that encoding. Only the program

memory usage should be affected by this, and this will not affect our tests.

A small hurdle in the implementation was that $4`BKH�CYH)() , which is used to com-

pile code for the node, is only capable of handling compile-time initialized arrays

stored in the program memory if they have a size less than 32 KiB. We needed more

space for the nBW+Q(Q�U*$0'�X0>(n+?B8(DBXMOH:CQ(Q code table. So the Y+DM'�D4K<$MJ+DBX<)M?4OBD+% program

can split the code table into two arrays, if necessary.

10.3.3 Choosing the Best Code Tables

We have decided to generate the code tables from a single node’s data. We have

done this, to make the algorithm perform as good or bad as it would in a real

deployment. By not using the entire dataset to generate the code table, we make

sure that the code table is not specifically optimized to all the data we compress

with it.

Since we have 4 different versions of the Huffman encoding, and 6 different

datasets that can be used to generate the Huffman codes, we want to limit the

number Huffman encodings we need to test. Therefore we will select the best per-

forming Huffman codes for each of the 4 versions.

To do this, we have generated code tables for all the different combinations

of versions and datasets. Then we use these code tables to compress all the data

from the experiment. The resulting output sizes can be seen in Table 10.4. From

this table we have selected the code tables that gave the best compression for each

of the different versions of the Huffman encoding. These are the bold numbers in

the table.

10.4 Lempel-Ziv 77

Lempel-Ziv 77[64] (LZ77) is a dictionary based data compression algorithm. It is

based on a sliding window over the data to be compressed. In the following we will

describe the algorithm using “Data Compression: The Complete Reference[51]” as

the reference.

The sliding window is split into two parts. One called the “search buffer” and

one called the “look-ahead buffer”. The search buffer should be much larger than

the look-ahead buffer.
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When compressing, the algorithm searches the search buffer after sequences

that match the beginning of the data in the look-ahead buffer. If more than one

such match is found, the longest one is used. When a match is found, a three part

token is outputted. The token contains the offset and length of the prefix match

and the first symbol in the look-ahead buffer not matched. If no match is found, the

offset and length of the token are both set to zero. After the token have been output,

the window is moved to the first element in the input data stream, not matched by

the newly written token.

The only major memory requirement of the LZ77 compression algorithm, is the

sliding window. So it is easy to adapt LZ77 to the small memory available on the

node.

A common improvement to LZ77 is to use two-part tokens. Instead of storing

offset, length and the next symbol, only the offset and length is stored. If no match

is found the unmatched symbol is written. This requires that all tokens are prefixed

with a bit, to tell the difference between plain symbols, and the two part tokens.

This changes the algorithm from using constant length codes, to using variable

length codes but should improve the compression ratio. We will also include this

improvement in our implementation.

10.4.1 Implementation Notes

We choose to implement two different versions of the LZ77 compression algorithm.

One where we store the raw accelerometer measurements, and one where we store

the difference. We choose to make the compression algorithm work with 8-bit sym-

bols, as this was by far the easiest to implement, and also the how we expected to

get the best performance, speed-wise.

10.5 A Simple Data Specific Algorithm

To compete with the two general purpose algorithms, we want to design a very

simple algorithm, that is adjusted closely to dataset we need to compress. The al-

gorithm we have chosen is based on the observation that for long periods of times,

e.g. when the sow is sleeping, the measurements from the accelerometer should not

change much.

When the algorithm receives a measurement, it notes the difference between

the last measurement and this measurement. If this difference is small enough to

be represented in 4 bits, i.e. if the difference is between −8 and 7, it is written as a

4 bit difference. Otherwise, the raw 12-bit measurement is written. To discern the

two cases, a 1 bit is written in front of a short value, and a 0 bit is written in front

of a long value.

We have tuned the algorithm on the dataset from the 4D08 node, where a 4

bit length for the short value yields the best compression. We did not use the entire

dataset for this tuning, as this would give this algorithm an unfair advantage.

10.6 Compression Framework

To make the implementation and testing of the compression algorithms easier, we

designed a simple compression framework. In this framework, we implemented

the algorithms in C. The framework is constructed so that we can compile the al-
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Figure 10.5 – The prototypes for the compression framework
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Figure 10.6 – The buffer interface
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gorithms both for the PC and for the nodes. Having the compression algorithms

running on the PC makes debugging and testing easier.

This also made it easier to verify that the compression algorithms works cor-

rectly. We can simply compress all the data from the field experiment, and then

decompress the result, while verifying that the decompressed data is the same as

the data we compressed.

10.6.1 Compression Algorithm Interface

To work with our compression framework, the compression algorithm must output

its data in 256-bytes chunks. The reason for this requirement, is that we would

need this on the node if we were to store the compressed data in the flash. So by

outputting 256 byte chunks in our tests, we make the results similar to what we

would expect if we had compressed the data in the field experiment.

The compression algorithms must provide two functions, the prototypes of

which can be seen in Figure 10.5. The )M?CU�LBK+D+%(%4X<%0$CU+L�84D function is called when

a new measurement must be compressed, and the Q+80W*%Cn function is called when

there is no more data, and the compression algorithm should empty its internal

buffers. The last function, n�$M'+O+84D<XMQMW�8B8(X y W<Q(QBD4K is for the compression algorithm

to call, whenever it has filled a buffer, and wants to empty it.

To ease the programming we have also created a very simple interface to han-

dle the 256 bytes buffer, and to write to it bitwise. This interface can be seen in

Figure 10.6. The K+D�%MD4J+X y W<Q(Q<DMK function initializes the buffer. This function should

be called at the beginning of the compression, and whenever the buffer needs to be

reset. Y+DMJ�X y W<Q(Q<DMK returns a pointer to the start of the buffer, and Y<D4J�X0W('B>BKH:CJ(J<D0'
returns a pointer to the parts of the buffer that have not been written to, since the

last call to K+D�%MD4J+X y W<Q(Q<DMK . The
y :!JH%4XB84D4Q4J function returns the number of bits left

before the buffer is full. Lastly ><K*:CJ+DBX y :!J9% writes at most 8 bits of data into the

buffer. The bits that are written are the least significant bits of the O<$4J+$ parameter.

10.6.2 Testing the Algorithms on the PC

On the PC we created two programs, called )M?!U�L<K<D�%(% and O<D�)M?CU+L<K<D+%(% . Both of

these programs take as the first parameter, the compression algorithm, and as the

second a CSV file containing samples to either compress or to compare the decom-
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pressed data against.

From the first parameter, the programs will construct a path to the compres-

sion/decompression algorithm, and dynamically load the algorithm. If the compres-

sion algorithm given is called Q<?B? , then the path will be QB?B?<®4QB?B?BX<)M?!U+L­��%0? for the

)M?CU+L<K+D+%(% program, and Q<?B?<®4QB?(?<XMOBD�)0?!U+L±��%0? for the O<D�)M?CU+LBK+D+%(% program.

)M?CU�L<K<D+%B% writes the compressed data to %�J<O<?0W<J , while O<D+)M?CU+L<K<D+%B% reads com-

pressed data from %�J<OH:!' . The O<D�)0?CU�LBK<D�%(% program cannot currently output the de-

compressed data, but only compare it to the contents of a CSV file, as this is all we

needed for our tests.

10.6.3 Testing the Algorithms on the Node

To test the compression algorithms on the node, we designed a simple applica-

tion, called P<?CU+L<K+D+%(%<:�?0'B=+D+%CJ . This application will read a data stream from the PC

through the serial port, and store it in memory. When the memory is filled, the node

will compress all the data, optionally sending the compressed data back to the PC.

This construction allows us to both verify that the algorithms works correctly on

the node, and measure the runtime energy consumption during the compression,

without including a serial transfer in this measurement.

To make the measurements more precise, we wish to transfer as much data as

possible to the node, before it begins to compress it. Therefore we decided to enable

the external memory again for these tests. Some of the nodes actually have 256 KiB

external memory, but as the ATMega only handles 64 KiB, the external memory is

separated into 4 banks. Two GPIO pins from the ATMega128 have been soldered to

the free address-pins on the external memory. Then the application can simply turn

these pins on and off, to select the required memory bank. As the node still uses its

internal memory for the lowest 4 KiB, we can switch bank without the state of the

application disappearing. We will use this to increase the amount of data we can

store, before starting the compression.

On the node, only the compression is important for our tests, which is why we

did not create a way to test the decompression algorithms on it.

10.7 Testing the Compression Algorithms

When testing the selected compression algorithms the interesting properties of the

algorithms are their compression ratio, how long it takes to compress data, and

what the node’s energy consumption is when compressing data. In the following

we will discuss how to measure these properties.

The data we will use for the tests, is the data gathered by the nodes in the field

experiment. This way we are ensured that our tests resemble the results we would

get, if the compression algorithms were actually used during the field experiment.

10.7.1 Compression Ratio

The compression ratio is defined as follows[51]:

Compression ratio =
size of the output stream

size of the input stream

The compression ratio does not depend on where the compression algorithm is exe-

cuted, so this test can easily be executed on the PC. To find the compression rate of
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the different algorithms, we compress them on the PC, and look at the compressed

size. As the size of input stream, we use the size of the L�$�%B%CJ(nBK4W algorithm. This

algorithm simply writes 12 bits per axis, for each measurement from the digital

accelerometer, much like we did in the field experiment.

10.7.2 Compression Time and Energy Consumption

The compression time is important, because we need to be able to compress the

samples from the accelerometers faster than we obtain them. Compressing a single

sample set, must take less than 200 ms, so that we still have time left to perform

other tasks, such as offloading the data. The energy consumption is important be-

cause it affects the lifetime of the node.

The first thought is that the compression time is going to be a good approx-

imation of the energy consumption. However the energy consumption of the AT-

Mega128 MCU is dependent on the code it executes[37]. A tight loop of '+?ML in-

structions uses 47.5 mW of power, while a tight loop of $(OBO instructions only uses

30.1 mW, both at 3.3 V. So the energy consumption of the compression algorithm

will be dependent on the mix of instructions issued. Therefore we want to measure

both the compression time and the energy consumption to get the whole picture.

10.8 Results

In this section we will present the results from our tests of the different compres-

sion algorithms. To have a reference to compare the algorithms against, we have

included the results we get when we store each measurement as 12-bit per axis,

just as in the experiment. We have called this algorithm L�$�%B%CJ(nBK4W .

10.8.1 Expected Results

We expect that the results from compressing the field experiment data will show

that compressing the difference will result in a better compression ratio than com-

pressing the raw values, as already discussed in Section 10.1. Apart from this we

do not have any expectations as to which compression algorithm will yield the best

compression ratio.

As for the speed, we expect that the two LZ77 variants will be the slowest by

far, as they have to search the entire search buffer, for much of the input stream. The

other algorithms should be pretty close to each other speed-wise, but the L�$�%B%�J4nBK(W
should be the fastest, as it does not perform any processing on the data.

With regard to energy consumption we expect the LZ77 algorithm to use most

energy, primarily because we expect it to be slower than the others. We do not

expect the different algorithms to differ much in their average current consumption,

so the algorithm that is fastest, is the one we would expect to have the lowest energy

consumption.

10.8.2 Code Size and Memory Usage

To measure the code size and memory usage of the different algorithms, we com-

piled the P<?CU+L<K+D+%(%<:�?0'B=+D+%CJ application with the different compression algorithms.

To get comparable results, we annotated the functions in the compression frame-

work (i.e. the functions in Figure 10.5) with XBX($4JBJ(KH: y WBJ+DBX(XoZBZ#'+?9:�'�8+:!'+D�\B\ , so that
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Table 10.5 – The code size and memory usage for the different compression algorithms

Algorithm Code size Memory usage

nBW+QBQ�UH$0' 1414 8

nBW+QBQ�UH$0'9XMO9:�Q(Q 1500 14

nBW+QBQ�UH$0'9X�>(n�?B84D 19867 8

nBW+QBQ�UH$0'9X�>(n�?B84DBX4O9:CQBQ 43158 15

84p<µBµ 998 1547

84p<µBµ<XMO9:�Q(Q 1192 1553

%<:�U�L984D 602 9º �4�B�H»!�(¼(½ 434 3

code from the compression algorithms did not get inlined into other components.

The results from these compilations can be seen in Table 10.5. For the memory

usage column, we have subtracted 256 bytes, as this is the size of the buffer we

store the result in during the compression. This buffer is not strictly needed by the

compression algorithms, so it seemed most fair to exclude this.

The L�$�%(%�J(nBK4W algorithm uses the same bit writing code as the other compres-

sion algorithms, but is otherwise as simple as possible. The 3 bytes of memory it

uses are all state needed for the bit writing routines. These 3 bytes are also in-

cluded in all the other algorithms memory consumption, as this is something they

would need, in all cases.

All the X4OH:�QBQ functions use 6 bytes more memory than their non- X4OH:CQBQ coun-

terparts. This is because the compression algorithms uses 6 bytes to remember the

values of the last sample set compressed.

If we look at the %<:�U�L984D algorithm, we can see that it uses only 9 bytes of

memory. 6 of these are used to calculate the difference, and the last three are for

the bit writing code.

The nBW+Q(Q�U*$0'�X0>(n+?B8(DBXMOH:CQ(Q algorithm uses 42 KiB of program memory. The most

significant part of this comes from the code table store in the memory. However it is

still much when compared to the 19 KiB of the nBW+QBQ�UH$0'9X�>(n�?B84D algorithm. The large

difference comes from the fact that when we subtract two 12 bit numbers from each

other, we need 13 bits to represent the result. So while the n(W+QBQ�UH$M'�X�>Bn+?B84D only has

4096 entries in its code table, the nBW+Q(Q�U*$0'�X0>(n+?<84DBXMOH:CQ(Q has 8192 entries. With

more entries in the code table, the codes also become longer, and these two facts

explains the size of the code table.

10.8.3 Compression Ratio

To find the compression ratio, we have compressed all the data with the different

algorithms. From this we can find the compression ratio, by using the L�$+%B%�J4n<K4W
algorithm as the input size.

The results from this is available in Table 10.6. From this table it is quite clear

that the 8-bit Huffman encodings are worthless when compressing the accelerom-

eter data, as the size of the “compressed” data is larger than the uncompressed

dataset. The whole symbol Huffman encoding performs better with a compression

ratio of approximately 90%, for both the one that uses the raw value, and the one

using the difference.
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Table 10.6 – The compressed sizes of the data collected in the experiment

Algorithm Compressed size Compression ratio

nBW+Q(Q�U*$0' 96.78 MiB 105.94%

nBW+Q(Q�U*$0'�X4O9:CQ(Q 96.47 MiB 105.61%

nBW+Q(Q�U*$0'�X0>(n+?B8(D 82.93 MiB 90.78%

nBW+Q(Q�U*$0'�X0>(n+?B8(DBXMOH:CQ(Q 82.73 MiB 90.56%

84p<µ(µ 78.95 MiB 86.42%

84p<µ(µ<X4O9:CQBQ 64.29 MiB 70.38%

%<:�U+L98(D 53.54 MiB 58.61%º �4�(�H»C�(¼4½ 91.35 MiB 100.00%

The LZ77 algorithm performs better than all the Huffman variants, but the

%<:�U+L98(D algorithm actually turns out to be the algorithm that compresses best with

a compression ratio of a little less than 60%.

Generally the difference based algorithms perform better than their non-differ-

ence counterparts. This was expected, but in the case of the Huffman encoding we

expected the difference between the two to be larger.

To compare our algorithms against more common algorithms we have com-

pressed the raw data from the field experiment, stored as 16 bit per axis, using

the Y<pH:!L and
y pH:!L�� programs. The compression ratio from this experiment is 61%

for the
y pH:�L�� program and 68% for the Y<pH:!L program. Seen from this perspective,

the compression ratio of the 84p<µ(µ<X4O9:CQBQ algorithm is quite good, and the %<:�U�L984D
algorithm is even better. However if the input data to the two programs was the

difference between samples, instead of the raw values, they would most likely beat

the %<:�U+L98(D algorithm, in terms of compression ratio.

10.8.4 Compression Speed and Current Consumption

To measure the compression speed and current consumption, we have attached a

node with the P<?CU+L<K+D+%(%<:�?0'B=+D+%CJ application installed, to both a PC and to our DAQ.

When the node begins to compress data, we measure the current consumption with

the DAQ and records both this and the time it took to compress the data. We take

care not to include the data transfer in these measurements.

We have compressed all the digital data, obtained from the experiments on the

node, while measuring the current consumption, using the program described in

Section 10.6.3.

In Table 10.7 the total time to compress all the data and the average time to

compress a single sample is listed. While the fastest algorithm compresses all the

data in less than one hour, it still takes the most of a day to test it, as the serial

transfer speed is the limiting factor. In the case of the slowest algorithm it takes a

little more than 6 days to run the experiment.

As expected the L+$�%B%�J4n<K4W algorithm is the fastest. The second fastest algorithm

is the %B:�U�L984D algorithm, which only uses 11 minutes more than the L�$�%B%�J4nBK(W algo-

rithm to compress all 21 million samples. The two 8-bit Huffman encoding functions

are pretty close to each other with regard to compression time. The nBW+QBQ�UH$0'9X�>(n�?B84D
is close to being twice as fast, but as the 8-bit versions need to look up twice as many

codes, this makes sense. The nBW<QBQ�U*$0'�X�>Bn+?B8(DBXMO9:�Q(Q algorithm is much slower than

107/120



Compression 10.8: Results

Table 10.7 – The speed of the different compression algorithms

Algorithm Total time (hh:mm) Average time per sample

nBW+QBQCU*$0' 4:08 0.710 ms

nBW+QBQCU*$0'�X4O9:CQBQ 4:09 0.712 ms

nBW+QBQCU*$0'�X0>(n+?<84D 2:35 0.443 ms

nBW+QBQCU*$0'�X0>(n+?<84DBX4O9:CQ(Q 5:10 0.888 ms

84p<µBµ 131:19 22.560 ms

84p<µBµBX4O9:CQBQ 121:24 20.857 ms

%<:�U�L�8(D 0:48 0.137 ms

L�$�%B%CJ(nBK4W 0:37 0.105 ms

Table 10.8 – The current consumption of the different compression algorithms

Current consumption
Algorithm

Average Total Per Sample

nBW+QBQ�UH$0' 4.944 mA 20.44 mAh 0.975 nAh

nBW+QBQ�UH$0'9XMO9:�Q(Q 4.940 mA 20.46 mAh 0.977 nAh

nBW+QBQ�UH$0'9X�>(n�?B84D 4.879 mA 12.57 mAh 0.600 nAh

nBW+QBQ�UH$0'9X�>(n�?B84DBX4O9:CQBQ 5.033 mA 26.02 mAh 1.242 nAh

84p<µBµ 5.540 mA 727.52 mAh 34.720 nAh

84p<µBµ<XMO9:�Q(Q 5.661 mA 687.20 mAh 32.796 nAh

%<:�U�L984D 5.185 mA 4.14 mAh 0.198 nAh

L�$�%B%�J4nBK(W 4.962 mA 3.02 mAh 0.144 nAh

all the other Huffman algorithms. The only explanation for this is that the extra

code needed to use two arrays for the code tables, is the cause of this slow-down.

Looking at 8Mp<µBµ and 8Mp<µBµ<XMOH:CQ(Q , these are by far the slowest algorithms, ap-

proximately 200 times slower than the L�$�%B%�J4nBK(W algorithm. However this matches

with our expectations.

As a general note, it does not seem like any of the algorithms would be too

slow to use, if we had to redo the field experiment while compressing the data. The

slowest algorithm compresses a sample from the digital accelerometer in 22.6 ms

(see Table 10.7), which is far from the 200 ms we set as a maximum limit. Of course

in the field experiment we would also have to compress the analog data, but even

with this included, we would not expect the compression time to become higher

than 50 ms, still within our range.

In Table 10.8, we have listed the current consumption of the different com-

pression algorithms, as average, total and per sample. From this table, we can see

that the average current consumption changes according to the algorithm used. The

Huffman algorithms has the lowest average current consumption, while the LZ77

algorithms has the highest. The difference between the lowest and highest aver-

age current consumption is approximately 10%. This is somewhat more than we

would have expected, but it still much less than the potential difference in current

consumption we refereed to in Section 10.7.2.

If we instead look at the total current consumed in order to compress the data,

the %<:	U�L98(D algorithm wins. The closest Huffman algorithm uses 3 times as much
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Table 10.9 – The effect compression would have on the amount of gathered data

Percent gathered data
Node

In experiment With compression

4D08 44.607% 54.988%

4D09 71.756% 82.176%

4D0B 64.567% 77.345%

4EBC 56.139% 68.656%

4EBE 61.910% 73.286%

4EBF 66.717% 78.773%

current, while the LZ77 algorithms uses approximately 160 times as much.

The approximately 700 mAh needed by the LZ77 algorithms to compress, is

quite a lot, when our energy budget is in the 1500 mAh range. The current con-

sumption can probably be lowered, as no optimizations have been performed on

the code. Most likely the compression time could be lowered significantly by rewrit-

ing the LZ77 algorithms in assembler.

However the n(W+QBQ�UH$M'�X�>(n�?B84D<XMO9:�Q(Q algorithm, which is the 3rd worst algorithm

with regard to current consumption would use only around 26 mAh to compress the

data. So all the algorithms we have tested, except for the LZ77 algorithms, could

be included on the node without affecting the lifetime very much.

10.9 Would Compression Have Helped?

In Section 6.6, we concluded that we could store 63 minutes of data in the flash,

before the there was no program memory left to store the incoming results in. If we

assume that we can compress the data with a ratio of 60% — as we have shown

that the %<:�U�L984D algorithm is capable of — we will be able to store 106 minutes of

data, i.e. 43 minutes more data.

To estimate how much this compression would have helped us, we use the

following approach. We find the missing periods of data in the results from the field

experiment. All the periods that are less that 40 minutes long, we simply delete,

and the periods that are longer we make 40 minutes shorter. This should give us a

rough estimate of how much data we could have gathered.

In Table 10.9, we have listed how many percent of the data we gathered during

the experiment, and how many we potentially could have gathered if we used the

%<:�U+L98(D compression algorithm. For most of the nodes we would raise the amount

of gathered data from two thirds to three quarters. So while it would have given

us more data coverage, it would not have alleviated our communication problems

entirely.

10.10 Summary

In this chapter we have developed a simple compression framework, for use in de-

termining the important performance characteristics when compression algorithms

are used for sensor networks.

We have described and evaluated 3 different compression algorithms, using

this framework. The algorithms have been chosen because they are well suited for
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the limited environment provided by the BTnode. We have shown that our own

simple algorithm is able to beat the two general purpose algorithms, in all the tests.

Some of this is because our simple algorithm is modeled closely to how we

expect the data to behave. However this does not explain it all.

If we start by looking at the poor compression ratio of the Huffman algorithms,

we can explain this by the fact that many symbols in the input data has frequencies

that are close to each other. This results in relatively long codes, which again en-

sures that the compression ratio will be poor. For the nBW+QBQCU*$0'9X�>(n+?<84D algorithm the

shortest code is 9 bits long, while it is 10 bits for the nBW+QBQ�UH$M'�X�>(n�?B84D<XMO9:CQBQ and 3

bits for the 8-bit algorithms.

The LZ77 algorithms has a much better compression ratio, but it is limited

by the fact that they need to find matches in the previous data. The last bits of

the output value of the digital accelerometer fluctuates randomly, which makes it

harder for the LZ77 algorithms to find long matches.

The %<:�U�L984D algorithm basically takes advantage of this random fluctuation,

and uses as little space as possible to represent it. This is the key to its good per-

formance, and why it also is able to beat much more advanced algorithms such as

Y<pH:�L and
y p9:!L�� .

The compression framework, complete with compression algorithms are avail-

able from n<JBJ(L±¬/®(®0n+?MYBJ4nBK<? y �°¯+�d��O4;�®<)0?CU+LBK+D+%(%B:0?0' .

10.10.1 Further Work

For future work, there are primarily two things that we would like to do:

• Implement more general purpose compression algorithms.

• Evaluate some lossy compression algorithms.

We would like to implement more general purpose algorithms, as the ones we have

chosen are very simple, and we therefore cannot expect good performance from

them. However the challenge in implementing more advanced algorithms will be in

making them perform well with the limited memory available on the nodes.

For this thesis we have avoided lossy compression techniques on purpose. How-

ever there might be a lot to gain from this. If we can detect the activity periods of

the sows, using e.g. only the 8 most significant bits of data from the digital ac-

celerometer, we already have compressed the data by 66%. Others have been able

to compress temperature readings well, while keeping the loss of precision within

the error-margin of the temperature sensor used[52], so a similar approach might

give good results for us also.
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Chapter 11

Conclusion

We have designed a sensor board for the BTnode, that allows us to monitor the

activity of sows. We have implemented a data collection application, and have de-

ployed it for a period of 20 days on 5 sows. In this deployment we have collected

a huge amount of activity data, and using this we have shown that our application

works as expected.

During the deployment we discovered several problems. The most prominent

was that data was being dropped, because of connectivity problems between the

PC’s and the nodes. This was in spite of the pre-deployment tests performed in the

same pen over twice the distance. However we succeeded in collecting just above

60% of the expected data in total.

Our most conservative lifetime estimation ended up being very close to the

actual lifetime of the deployed nodes, while the estimation based on measuring the

application for 3 days was somewhat off. This can be explained by the connectivity

problems, which led to the Bluetooth module being turned on for a larger period

than expected.

Our compression framework have allowed us to evaluate how well different

compression algorithms would perform, if they had been used during the deploy-

ment. We have developed an algorithm specifically designed for the gathered data,

and have shown that it allows better a better compression ratio than common gen-

eral purpose algorithms. From the energy consumption measurements we have

shown that our custom compression algorithm would not affect the node’s lifetime

much, where the LZ77 compression algorithm would have used almost half of the

energy available on the node, just to compress the gathered data.

11.1 Future Work

From this point the focus of the Hogthrob project, will be to develop the heat-

detection model, and implement it. For this purpose a FPGA based platform have

been developed[37], which allows prototyping hardware accelerators that might be

needed for an energy efficient implementation of the heat-detection model.

Apart from this, there is the task of incorporating our improvements to the

TinyBT stack, into the base TinyOS tree. As described in Section 5.5.1, a port to the

BTnode 3 is also in in order, so that TinyOS applications can use the Bluetooth radio

on this platform.

The compression framework should also be incorporated into TinyOS, and the

interface should be made more generic to allow easier integration into new appli-

cations. Furthermore new specific and general purpose algorithms should be imple-
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mented, to allow users of TinyOS easy access to a variety of compression algorithms.

11.2 Future Work on Similar Applications

During the development of our application, we have been contacted by several peo-

ple, who have expressed an interest in using a similar system for health care. Two

application areas have been proposed to us:

• Using the system to detect whether fever in children is serious.

• Using the system to detect if senior citizens are prone to falling.

For the first application, the problem is that when children are hospitalized with a

fever, it is difficult to measure if the fever is serious. However, doctors and nurses —

over time — learns to tell this by observing the children. They are not able to explain

exactly which signs they look for, but the assumption is that the activity level of the

child plays a part in this. Therefore they would like to attach accelerometers to the

children, and gather activity information. These experiments would have to happen

at a hospital, so it would be a requirement that the node can collect this activity

information in its memory, as using a radio could interfere with other equipment at

the hospital. Also the node would have to be small enough to not limit the children’s

movements.

The system to detect if senior citizens are prone falling, would become part in a

larger Bluetooth based system. The system’s goal is to monitor the health of senior

citizens, and it already includes a scale, and a device for measuring the blood-

pressure. The devices offloads the obtained measurements over Bluetooth through

a mobile phone to an off-site server, where the physicians can examine the data.

For both systems, a data collecting experiment is needed as a first phase to

establish a detection model. A single node with a modified version of our sow mon-

itoring application have already been deployed in an initial feasibility study for the

senior citizen project.
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Appendix B

Sow Movements

Legend for M column

↑ The sow is standing up

↓ The sow is laying down

⊗ The sow is out of view

Table B.1 – Sow movement form 0:00 to 5:00, the 1th of March 2005

Sow 1 Sow 2 Sow 3 Sow 4 Sow 5

Time 4EBC 4D08 4EBF 4D08 4D09

M Cam M Cam M Cam M Cam M Cam

0:00 ⊗ ⊗ ↑ 4 ↓ 2 ⊗

:05 ⊗ 4

1:05 ↑ 4

:48 ↑ 2

:52 ↓ 2

2:36 ↑ 2

:43 ⊗ 4

:48 ↓ 2

:50 ↑ 4

:53 ↑ 2

:54 ↓ 4

:57 ↑ 4

3:01 ↓ 4

:11 ↑ 4

:16 ↓ 4

:17 ⊗ 2 ↑ 2

:20 ↑ 4

:22 ⊗ 4

:26 ↑ 4

:33 ↓ 2

:35 ⊗ 4

:43 ↑ 4

4:07 ⊗ 4

:32 ↑ 4

:34 ↓ 1
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Sow Movements

Table B.2 – Sow movements form 0:00 to 5:00, the 1th of March 2005

Sow 1 Sow 2 Sow 3 Sow 4 Sow 5

Time 4EBC 4D08 4EBF 4EBE 4D09

M Cam M Cam M Cam M Cam M Cam

0:00 ⊗ ⊗ ⊗ ⊗ ⊗

:19 ↑ 4

:20 ↑ 4

:28 ⊗ 4

:55 ↓ 3

:56 ↑ 4

:57 ↑ 3

1:10 ⊗ 3

:15 ↓ 2

:20 ↑ 2

:25 ↓ 3

2:02 ↑ 2

:03 ↓ 2

:56 ↑ 4

3:10 ⊗ 4

:41 ↑ 2

:42 ↓ 2

:45 ↑ 2

:46 ↓ 2 ↑ 4

:48 ⊗ 4

:53 ↑ 2

:54 ↑ 2

:55 ↓ 2

:59 ⊗ 2

4:31 ↑ 4

:36 ↑ 2

:39 ↑ 2

:40 ↓ 2

:41 ↓ 4

:43 ↑ 2

:46 ↑ 4

:48 ↓ 4

:50 ↑ 2

:51 ↓ 2
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